Electrochemically Anodized V2O5 as an Efficient Sodium Cathode

被引:9
|
作者
Wang, Lin [1 ]
Wang, Yichun [1 ]
Cao, Anmin [2 ,3 ]
Ni, Jiangfeng [1 ,4 ]
Li, Liang [1 ]
机构
[1] Soochow Univ, Ctr Energy Convers Mat & Phys CECMP, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[4] Light Ind Inst Electrochem Power Sources, Suzhou 215699, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
AMORPHOUS VANADIUM-OXIDE; ION BATTERIES; HOLLOW NANOSPHERES; SUPERIOR CATHODE; CARBON; SUPERCAPACITORS; NANOSHEETS; NANOTUBES; GROWTH; ANODE;
D O I
10.1021/acs.energyfuels.1c00438
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Vanadium oxide has a high theoretical capability for sodium storage, but this capability has often been plagued by sluggish electrochemical reaction kinetics upon sodiation/desodiation. To alleviate this problem, we report on an ordered structure of V2O5 nanopores by electrochemical anodization. The nanopores are amorphous in structure, 30-40 nm in diameter, and similar to 2.4 mu m in depth, exhibiting favorable electrochemical performance for sodium. In the potential range between 1.5 and 3.8 V, the nanoporous architecture of V2O5 displays a reversible capacity of 177 mAh g(-1) with initial coulombic efficiency of 74% and retains a capacity of 69 mAh g(-1) over 50 cycles at a higher rate of 100 mA g(-1). The open framework of nanopores and the isotropic properties of the amorphous structure are believed to be responsible for the appealing electrochemical performance of anodized V2O5.
引用
收藏
页码:8358 / 8364
页数:7
相关论文
共 50 条
  • [31] 7Li NMR studies of electrochemically lithiated V2O5 xerogels
    Holland, GP
    Buttry, DA
    Yarger, JL
    CHEMISTRY OF MATERIALS, 2002, 14 (09) : 3875 - 3881
  • [32] Electrochemically inducing V2O5•nH2O nanoarrays vertically growth on VSx microrods for highly stable zinc ion battery cathode
    Liu, Yuexin
    Sun, Yuning
    Zhang, Jing
    Hao, Xuxia
    Zhang, Mingcheng
    Wei, Ping
    Zhao, Xiaoli
    Cai, Kefeng
    NANO ENERGY, 2024, 120
  • [33] Dehydroaromatization with V2O5
    Karki, Megha
    Araujo, Hugo C.
    Magolan, Jakob
    SYNLETT, 2013, 24 (13) : 1675 - 1678
  • [34] HYDRATES OF V2O5
    THEOBALD, F
    BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE PARTIE I-PHYSICOCHIMIE DES SYSTEMES LIQUIDES ELECTROCHIMIE CATALYSE GENIE CHIMIQUE, 1975, (7-8): : 1607 - 1612
  • [35] V2O5 in anodized aluminum oxide, impact of pore size, interconnections, and dynamic conductivity
    Kim, Nam
    McKelvey, Kim
    Liu, Chanyuan
    Sahadeo, Emily
    Rose, Olivia
    Lee, Sangbok
    Rubloff, Gary
    White, Henry
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [36] V2O5 - Jellies
    Rabinerson, A
    KOLLOID-ZEITSCHRIFT, 1934, 68 (03): : 305 - 316
  • [37] A V2O5 cathode for aqueous rechargeable Pb-ion batteries
    Liu, Ningbo
    Zhao, Xiaoying
    Wang, Xiaohan
    Li, Qiaqia
    Wang, Liubin
    CHEMICAL COMMUNICATIONS, 2023, 59 (85) : 12719 - 12722
  • [38] Synthesis of V2O5 microspheres by spray pyrolysis as cathode material for supercapacitors
    Yin, Zhendong
    Xu, Jie
    Ge, Yali
    Jiang, Qiaoya
    Zhang, Yaling
    Yang, Yawei
    Sun, Yuping
    Hou, Siyu
    Shang, Yuanyuan
    Zhang, Yingjiu
    MATERIALS RESEARCH EXPRESS, 2018, 5 (03):
  • [39] Effect of V2O5 additions on the crystallisation of sodium silicate glasses
    Mehdikhani, Behzad
    Mirhadi, Bahman
    GLASS TECHNOLOGY-EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART A, 2012, 53 (04): : 146 - 149
  • [40] Next generation V2O5 cathode materials for Li rechargeable batteries
    McGraw, JM
    Perkins, JD
    Zhang, JG
    Liu, P
    Parilla, PA
    Turner, J
    Schulz, DL
    Curtis, CJ
    Ginley, DS
    SOLID STATE IONICS, 1998, 113 : 407 - 413