On Robustness of Equilibria in Dynamical Transportation Networks

被引:0
|
作者
Stalberg, Rasmus
Nilsson, Gustav [1 ]
Como, Giacomo [1 ,2 ]
机构
[1] Lund Univ, Dept Automat Control, BOX 118, S-22110 Lund, Sweden
[2] Politecn Torino, Lagrange Dept Math Sci, Corso Duca Abruzzi 24, I-10129 Turin, Italy
基金
瑞典研究理事会;
关键词
CELL TRANSMISSION MODEL; SENSITIVITY-ANALYSIS; TRAFFIC FLOW; STABILITY; WAVES;
D O I
10.23919/ecc.2019.8796234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With growing traffic demands, transportation networks become more and more congested and prone to disruptions. In this paper, we study how different perturbations affect the free flow equilibria, i.e., equilibria where no congestion effects are present, in transportation networks. More specifically, if and when the equilibrium of the perturbed dynamics is still in free flow. A generalized cell transmission model models the dynamics of the transportation network, and the perturbations considered are perturbations in the exogenous inflows, flow capacity drops, and perturbations in the routing, i.e., when drivers deviate from their normal route preferences. The paper also shows that social optimum assignments in traffic networks, may not be the most robust ones.
引用
收藏
页码:2209 / 2214
页数:6
相关论文
共 50 条
  • [1] Robustness of multimodal transportation networks
    Model oceny odporności multimodalnych sieci transportowych
    [J]. Bocewicz, G. (bocewicz@ie.tu.koszalin.pl), 1600, Polish Academy of Sciences Branch Lublin (16):
  • [2] ROBUSTNESS OF MULTIMODAL TRANSPORTATION NETWORKS
    Bocewicz, Grzegorz
    [J]. EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2014, 16 (02): : 259 - 269
  • [3] Dynamical robustness in gene regulatory networks
    Faulon, JL
    Martin, S
    Carr, RD
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 626 - 627
  • [4] Dynamical robustness of complex biological networks
    Graduate School of Engineering, The University of Tokyo, Tokyo
    113-8656, Japan
    不详
    113-8656, Japan
    不详
    153-8505, Japan
    [J]. Mathematical Approaches to Biological Systems: Networks, Oscillations, and Collective Motions, (29-53):
  • [5] Universal Method of Searching for Equilibria and Stochastic Equilibria in Transportation Networks
    D. R. Baimurzina
    A. V. Gasnikov
    E. V. Gasnikova
    P. E. Dvurechensky
    E. I. Ershov
    M. B. Kubentaeva
    A. A. Lagunovskaya
    [J]. Computational Mathematics and Mathematical Physics, 2019, 59 : 19 - 33
  • [6] Universal Method of Searching for Equilibria and Stochastic Equilibria in Transportation Networks
    Baimurzina, D. R.
    Gasnikov, A. V.
    Gasnikova, E. V.
    Dvurechensky, P. E.
    Ershov, E. I.
    Kubentaeva, M. B.
    Lagunovskaya, A. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (01) : 19 - 33
  • [7] Dynamical properties of transportation on complex networks
    Shen, Bo
    Gao, Zi-You
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (5-6) : 1352 - 1360
  • [8] Efficiency and robustness of ant colony transportation networks
    Zoe Cook
    Daniel W. Franks
    Elva J. H. Robinson
    [J]. Behavioral Ecology and Sociobiology, 2014, 68 : 509 - 517
  • [9] The robustness evaluation of global maritime transportation networks
    Peng P.
    Cheng S.
    Liu X.
    Mei Q.
    Lu F.
    [J]. Lu, Feng (luf@lreis.ac.cn), 1600, Science Press (72): : 2241 - 2251
  • [10] Robustness of transportation networks subject to degradable links
    Nagurney, A.
    Qiang, Q.
    [J]. EPL, 2007, 80 (06)