ON THE ROBUST KNAPSACK PROBLEM

被引:21
|
作者
Monaci, Michele [1 ]
Pferschy, Ulrich [2 ]
机构
[1] Univ Padua, DEI, I-35131 Padua, Italy
[2] Graz Univ, Dept Stat & Operat Res, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
knapsack problem; robust optimization; worst-case ratio; COMBINATORIAL OPTIMIZATION; PRICE; MAX;
D O I
10.1137/120880355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an uncertain variant of the knapsack problem that arises when the exact weight of each item is not exactly known in advance but belongs to a given interval, and the number of items whose weight differs from the nominal value is bounded by a constant. We analyze the worsening of the optimal solution value with respect to the classical problem, and exactly determine its worst-case performance depending on uncertainty for all parameter configurations. We perform the same analysis for the fractional version of the problem in which one is allowed to pack any fraction of the items. In addition, we derive the worst-case performance ratio with respect to the optimal solution value, for both the fractional problem and for a variant of the well-known greedy algorithm. Finally, we consider a relevant special case and provide a combinatorial algorithm for solving the fractional problem in an efficient way.
引用
收藏
页码:1956 / 1982
页数:27
相关论文
共 50 条
  • [21] The robust bilevel continuous knapsack problem with uncertain coefficients in the follower's objective
    Buchheim, Christoph
    Henke, Dorothee
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (04) : 803 - 824
  • [22] The robust bilevel continuous knapsack problem with uncertain coefficients in the follower’s objective
    Christoph Buchheim
    Dorothee Henke
    Journal of Global Optimization, 2022, 83 : 803 - 824
  • [23] The multi-band robust knapsack problem-A dynamic programming approach
    Classen, Grit
    Koster, Arie M. C. A.
    Schmeink, Anke
    DISCRETE OPTIMIZATION, 2015, 18 : 123 - 149
  • [24] On the Product Knapsack Problem
    Claudia D’Ambrosio
    Fabio Furini
    Michele Monaci
    Emiliano Traversi
    Optimization Letters, 2018, 12 : 691 - 712
  • [25] KNAPSACK PROBLEM - SURVEY
    SALKIN, HM
    KLUYVER, CAD
    NAVAL RESEARCH LOGISTICS, 1975, 22 (01) : 127 - 144
  • [26] On the rectangular knapsack problem
    Boekler, Fritz
    Chimani, Markus
    Wagner, Mirko H.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2022, 96 (01) : 149 - 160
  • [27] Unified Knapsack Problem
    Jaiswal, Umesh Chandra
    Singh, Ankit
    Maurya, Omkar
    Kumar, Anil
    COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 325 - 330
  • [28] A Survey of the Knapsack Problem
    Assi, Maram
    Haraty, Ramzi A.
    2018 19TH INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2018, : 167 - 172
  • [29] PERIODICITY AND KNAPSACK PROBLEM
    LESKA, CJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A219 - A219
  • [30] A Synchronized Knapsack Problem*
    Bendali, F.
    Mailfert, J.
    Kamga, E. Mole
    Quilliot, A.
    Toussaint, H.
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 687 - 692