A Prediction Model of Ice Thickness Based on Grey Support Vector Machine

被引:0
|
作者
Ma Xiao-min [1 ]
Gao Jian [2 ]
Wu Chi [1 ]
He Rui [2 ]
Gong Yi-yu [1 ]
Li Yi [2 ]
Wu Tian-bao [1 ]
机构
[1] State Grid Sichuan Elect Power Res Inst, Chengdu, Peoples R China
[2] State Grid Sichuan Elect Power Co, Chengdu, Peoples R China
关键词
icing; transmission line; short-term prediction; grey model; support vector machine; on-line monitoring;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to reduce the icing accidents of transmission lines, the prediction of icing thickness on transmission lines will be able to effectively guide the anti-icing work of power grid. In this paper, a short-term prediction model based on grey support vector machine for icing thickness of transmission lines is proposed, and the elimination of dirty data and the method of data preprocessing are analyzed. The accuracy and applicability of the proposed model are verified by the comparison between the model predictions and the measured data based on the predicted maximum ice thickness, it can provide guidance on monitoring icing condition, the early warning and AC/DC melting ice work. The proposed model is compared with support vector machine (SVM) and particle swarm optimization algorithm (PSO) prediction model, and the average error of the proposed model is 0.28mm, and the average absolute error is 4.33%, which is suitable for short-term prediction of icing thickness of transmission line. In the ice area, the application of the prediction model can guide the transmission line ice-resistant work.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [31] The influence of hemodynamics on graft patency prediction model based on support vector machine
    Mao, Boyan
    Feng, Yue
    Wang, Wenxin
    Li, Bao
    Zhao, Zhou
    Zhang, Xiaoyan
    Jin, Chunbo
    Wu, Dandan
    Liu, Youjun
    JOURNAL OF BIOMECHANICS, 2020, 98
  • [32] Gray cast iron strength prediction model based on support vector machine
    Institute of Systems Engineering, Southeast University, Nanjing 210096, China
    Zhuzao, 2006, 7 (711-714):
  • [33] Prediction Model of Traffic Accidents Based on Least Square Support Vector Machine
    Mo, Zhenlong
    INNOVATION AND SUSTAINABILITY OF MODERN RAILWAY, 2012, : 143 - +
  • [34] Wavelet support vector machine-based prediction model of dam deformation
    Su, Huaizhi
    Li, Xing
    Yang, Beibei
    Wen, Zhiping
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 110 : 412 - 427
  • [35] Eutrophication Prediction Model of Bohai Bay Based on Optimized Support Vector Machine
    Xiang Xianquan
    Yuan Dekui
    Tao Jianhua
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [36] Construction of beam quality factor prediction model based on support vector machine
    Leng Kun
    Wu Wenyuan
    Zhang Xi
    Gong Yanchun
    Yang Yuntao
    FIFTH INTERNATIONAL SYMPOSIUM ON LASER INTERACTION WITH MATTER, 2019, 11046
  • [37] Machinery condition prediction based on support vector machine model with wavelet transform
    Liu, Shu-Jie
    Lu, Hui-Tian
    Li, Chao
    Hu, Ya-Wei
    Zhang, Hong-Chao
    Journal of Donghua University (English Edition), 2014, 31 (06) : 831 - 834
  • [38] Machinery Condition Prediction Based on Support Vector Machine Model with Wavelet Transform
    刘淑杰
    陆惠天
    李超
    胡娅维
    张洪潮
    Journal of Donghua University(English Edition), 2014, 31 (06) : 831 - 834
  • [39] Data fusion model based on support vector machine for traffic flow prediction
    Chen, Liang
    Liu, Weizheng
    Li, Qiaoru
    Wei, Lianyu
    Ma, Shoufeng
    PROCEEDINGS OF THE 2007 CONFERENCE ON SYSTEMS SCIENCE, MANAGEMENT SCIENCE AND SYSTEM DYNAMICS: SUSTAINABLE DEVELOPMENT AND COMPLEX SYSTEMS, VOLS 1-10, 2007, : 211 - 218
  • [40] A Financial Distress Prediction Model Based on Sparse Algorithm and Support Vector Machine
    Zeng, Sen
    Li, Yaqin
    Yang, Wanjun
    Li, Yanru
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)