Fairness-Aware Process Mining

被引:9
|
作者
Qafari, Mahnaz Sadat [1 ]
van der Aalst, Wil [1 ]
机构
[1] Rhein Westfal TH Aachen RWTH, Aachen, Germany
来源
ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2019 CONFERENCES | 2019年 / 11877卷
关键词
D O I
10.1007/978-3-030-33246-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Process mining is a multi-purpose tool enabling organizations to improve their processes. One of the primary purposes of process mining is finding the root causes of performance or compliance problems in processes. The usual way of doing so is by gathering data from the process event log and other sources and then applying some data mining and machine learning techniques. However, the results of applying such techniques are not always acceptable. In many situations, this approach is prone to making obvious or unfair diagnoses and applying them may result in conclusions that are unsurprising or even discriminating. In this paper, we present a solution to this problem by creating a fair classifier for such situations. The undesired effects are removed at the expense of reduction on the accuracy of the resulting classifier.
引用
收藏
页码:182 / 192
页数:11
相关论文
共 50 条
  • [21] Fairness-Aware Unsupervised Feature Selection
    Xing, Xiaoying
    Liu, Hongfu
    Chen, Chen
    Li, Jundong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3548 - 3552
  • [22] Fairness-aware Graph Attention Networks
    Kose, O. Deniz
    Shen, Yanning
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 843 - 846
  • [23] Fairness-aware Federated Matrix Factorization
    Liu, Shuchang
    Ge, Yingqiang
    Xu, Shuyuan
    Zhang, Yongfeng
    Marian, Amelie
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 168 - 178
  • [24] Fairness-aware Maximal Clique Enumeration
    Pan, Minjia
    Li, Rong-Hua
    Zhang, Qi
    Dai, Yongheng
    Tian, Qun
    Wang, Guoren
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 259 - 271
  • [25] Towards Fairness-Aware Adversarial Learning
    Zhang, Yanghao
    Zhang, Tianle
    Mu, Ronghui
    Huang, Xiaowei
    Ruan, Wenjie
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 24746 - 24755
  • [26] FairGT: A Fairness-aware Graph Transformer
    Luo, Renqiang
    Huang, Huafei
    Yu, Shuo
    Zhang, Xiuzhen
    Xia, Feng
    arXiv,
  • [27] Fairness-aware recommendation with meta learning
    Oh, Hyeji
    Kim, Chulyun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Fairness-aware Methods in Rankings and Recommenders
    Pitoura, Evaggelia
    Stefanidis, Kostas
    Koutrika, Georgia
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 1 - 4
  • [29] On Convexity and Bounds of Fairness-aware Classification
    Wu, Yongkai
    Zhang, Lu
    Wu, Xintao
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 3356 - 3362
  • [30] Learning Fairness-Aware Relational Structures
    Zhang, Yue
    Ramesh, Arti
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2543 - 2550