Morphology and Dimensions Controlled of Titania Nanotubes in Mixed Organic-Inorganic Electrolyte

被引:1
|
作者
Lim, Ying-Chin [1 ]
Zainal, Zulkarnain [1 ,2 ]
Hussein, Mohd Zobir [1 ,2 ]
Tan, Wee-Tee [3 ]
机构
[1] Univ Putra Malaysia, Dept Chem, Fac Sci, Ctr Excellence Catalysis Sci & Technol, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Adv Mat & Nanotechnol Lab, Inst Adv Technol ITMA, Upm Serdang, Selangor, Malaysia
[3] Univ Putra Malaysia, Dept Chem, Fac Sci, Upm Serdang, Selangor, Malaysia
来源
GREEN TECHNOLOGIES FOR SUSTAINABLE & INNOVATION IN MATERIALS | 2013年 / 686卷
关键词
nanotubes; anodic oxidation; morphology; ethylene glycol; dimensions; TIO2; NANOTUBES; ANODIC-OXIDATION; FABRICATION; ARRAYS;
D O I
10.4028/www.scientific.net/AMR.686.13
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The formation of self-organized and highly ordered Titania nanotubes was achieved by anodisation of Ti in a mixture of water-ethylene glycol electrolyte. Control over the dimension and morphology of nanotubes was successfully established by changing the anodisation voltage, the ammonium fluoride (NH4F) concentration and the anodisation time. A threshold voltage of 5 V is required for nanotube formation. Collapsed tubes were formed by applying electrochemical etching at high fluoride concentration. This study also showed that the nanotube lengths ranging from 0.5 to 2.6 mu m could be formed by controlling the voltage applied and fluoride concentration with preferred growth along the c-axis.
引用
收藏
页码:13 / +
页数:2
相关论文
共 50 条
  • [21] An assembly of organic-inorganic composites using halloysite clay nanotubes
    Lazzara, Giuseppe
    Cavallaro, Giuseppe
    Panchal, Abhishek
    Fakhrullin, Rawil
    Stavitskaya, Anna
    Vinokurov, Vladimir
    Lvov, Yuri
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2018, 35 : 42 - 50
  • [22] Application of imogolite clay nanotubes in organic-inorganic nanohybrid materials
    Ma, Wei
    Yah, Weng On
    Otsuka, Hideyuki
    Takahara, Atsushi
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) : 11887 - 11892
  • [23] Halloysite Nanotubes: Green Nanomaterial for Functional Organic-Inorganic Nanohybrids
    Ma, Wei
    Wu, Hui
    Higaki, Yuji
    Takahara, Atsushi
    CHEMICAL RECORD, 2018, 18 (7-8): : 986 - 999
  • [24] Phosphorus dendrimers for the controlled elaboration of organic-inorganic materials
    Caminade, AM
    Majoral, JP
    JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (35-36) : 3643 - 3649
  • [25] Organic-inorganic hybrid fillers for the controlled release of antioxidants
    Mascia, Leno
    Capra, Carlo
    Lavorgna, Marino
    MACROMOLECULAR SYMPOSIA, 2007, 247 : 129 - 139
  • [26] Silica-titania-based organic-inorganic hybrid materials for photovoltaic applications
    Lin, Cheng-Lan
    Yeh, Mei-Yu
    Chen, Chih-Hsien
    Sudhakar, Sundarraj
    Luo, Shr-Jie
    Hsu, Ying-Chan
    Huang, Chung-Yi
    Ho, Kuo-Chuan
    Luh, Tien-Yau
    CHEMISTRY OF MATERIALS, 2006, 18 (17) : 4157 - 4162
  • [27] Enhanced amplified spontaneous emission from morphology-controlled organic-inorganic halide perovskite films
    Qin, Liang
    Lv, Longfeng
    Ning, Yu
    Li, Chunhai
    Lu, Qipeng
    Zhu, Lijie
    Hu, Yufeng
    Lou, Zhidong
    Teng, Feng
    Hou, Yanbing
    RSC ADVANCES, 2015, 5 (125) : 103674 - 103679
  • [28] Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications
    Tripathi, Bijay P.
    Shahi, Vinod K.
    PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) : 945 - 979
  • [29] Novel organic-inorganic composite polymer-electrolyte membranes for DMFCs
    Sahu, A. K.
    Bhat, S. D.
    Pitchumani, S.
    Sridhar, P.
    Vimalan, V.
    George, C.
    Chandrakumar, N.
    Shukla, A. K.
    JOURNAL OF MEMBRANE SCIENCE, 2009, 345 (1-2) : 305 - 314
  • [30] Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase
    Di, Shengli
    Nie, Xueyu
    Ma, Guoqiang
    Yuan, Wentao
    Wang, Yuanyuan
    Liu, Yongchang
    Shen, Shigang
    Zhang, Ning
    ENERGY STORAGE MATERIALS, 2021, 43 : 375 - 382