Growth in elevated CO2 enhances temperature response of photosynthesis in wheat

被引:47
|
作者
Alonso, Aitor [1 ]
Perez, Pilar [1 ]
Martinez-Carrasco, Rafael [1 ]
机构
[1] CSIC, Inst Nat Resources & Agrobiol Salamanca, E-37071 Salamanca, Spain
关键词
GAS-EXCHANGE MEASUREMENTS; CARBON-DIOXIDE; MESOPHYLL CONDUCTANCE; ELECTRON-TRANSPORT; KINETIC-PROPERTIES; LEAF RESPIRATION; RUBISCO; NITROGEN; ACCLIMATION; PLANTS;
D O I
10.1111/j.1399-3054.2008.01177.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The temperature dependence of C-3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat (Triticum aestivum L.) grown in controlled chambers with 370 or 700 mu mol mol(-1) CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) V-cmax, although the latter effect was reversed at 15 degrees C. With elevated CO2, J(max) decreased in the 15-25 degrees C temperature range and increased at 30 and 35 degrees C. The temperature response (activation energy) of V-cmax and J(max) increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.
引用
下载
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [31] Genotypic variation in source and sink traits affects the response of photosynthesis and growth to elevated atmospheric CO2
    Fabre, Denis
    Dingkuhn, Michael
    Yin, Xinyou
    Clement-Vidal, Anne
    Roques, Sandrine
    Soutiras, Armelle
    Luquet, Delphine
    PLANT CELL AND ENVIRONMENT, 2020, 43 (03): : 579 - 593
  • [32] Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings
    Wang, X. -W.
    Zhao, M.
    Mao, Z. -J.
    Zhu, S. -Y.
    Zhang, D. -L.
    Zhao, X. -Z.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2008, 55 (01) : 54 - 58
  • [33] Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings
    X. -W. Wang
    M. Zhao
    Z. -J. Mao
    S. -Y. Zhu
    D. -L. Zhang
    X. -Z. Zhao
    Russian Journal of Plant Physiology, 2008, 55 : 54 - 58
  • [34] High temperature reduces the positive effect of elevated CO2 on wheat root system growth
    Benlloch-Gonzalez, Maria
    Bochicchio, Rocco
    Berger, Jens
    Bramley, Helen
    Palta, Jairo A.
    FIELD CROPS RESEARCH, 2014, 165 : 71 - 79
  • [35] Potato response to elevated CO2 and temperature.
    Chen, CT
    Setter, TL
    PLANT PHYSIOLOGY, 1997, 114 (03) : 490 - 490
  • [36] Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea
    Jin, Jian
    Tang, Caixian
    Armstrong, Roger
    Butterly, Clayton
    Sale, Peter
    PLANT AND SOIL, 2013, 368 (1-2) : 315 - 328
  • [37] Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea
    Jian Jin
    Caixian Tang
    Roger Armstrong
    Clayton Butterly
    Peter Sale
    Plant and Soil, 2013, 368 : 315 - 328
  • [38] Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L seedlings
    Faria, T
    Wilkins, D
    Besford, RT
    Vaz, M
    Pereira, JS
    Chaves, MM
    JOURNAL OF EXPERIMENTAL BOTANY, 1996, 47 (304) : 1755 - 1761
  • [39] Scaling the response of wheat to elevated CO2:: Comparison of photosynthetic acclimation and organ/plant growth
    Grüters, U
    Fangmeier, N
    Jäger, HJ
    JOURNAL OF APPLIED BOTANY-ANGEWANDTE BOTANIK, 2000, 74 (1-2): : 74 - 82
  • [40] Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release
    Biswas, D. K.
    Xu, H.
    Li, Y. G.
    Ma, B. L.
    Jiang, G. M.
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (06) : 1485 - 1496