Optimal chaos control through reinforcement learning

被引:32
|
作者
Gadaleta, S [1 ]
Dangelmayr, G [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
关键词
D O I
10.1063/1.166451
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general purpose chaos control algorithm based on reinforcement learning is introduced and applied to the stabilization of unstable periodic orbits in various chaotic systems and to the targeting problem. The algorithm does not require any information about the dynamical system nor about the location of periodic orbits. Numerical tests demonstrate good and fast performance under noisy and nonstationary conditions. (C) 1999 American Institute of Physics. [S1054-1500(99)00703-X].
引用
收藏
页码:775 / 788
页数:14
相关论文
共 50 条
  • [41] Optimal Control via Reinforcement Learning with Symbolic Policy Approximation
    Kubalik, Jiri
    Alibekov, Eduard
    Babuska, Robert
    IFAC PAPERSONLINE, 2017, 50 (01): : 4162 - 4167
  • [42] Reinforcement Learning for Optimal Control of a District Cooling Energy Plant
    Guo, Zhong
    Coffman, Austin R.
    Barooah, Prabir
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3329 - 3334
  • [43] Exploring optimal control of epidemic spread using reinforcement learning
    Abu Quwsar Ohi
    M. F. Mridha
    Muhammad Mostafa Monowar
    Md. Abdul Hamid
    Scientific Reports, 10
  • [44] Optimal PID and Antiwindup Control Design as a Reinforcement Learning Problem
    Lawrence, Nathan P.
    Stewart, Gregory E.
    Loewen, Philip D.
    Forbes, Michael G.
    Backstrom, Johan U.
    Gopaluni, R. Bhushan
    IFAC PAPERSONLINE, 2020, 53 (02): : 243 - 248
  • [45] Exploring optimal control of epidemic spread using reinforcement learning
    Ohi, Abu Quwsar
    Mridha, M. F.
    Monowar, Muhammad Mostafa
    Hamid, Md. Abdul
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [46] LOW-THRUST OPTIMAL CONTROL VIA REINFORCEMENT LEARNING
    Miller, Daniel
    Linares, Richard
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 1817 - 1834
  • [47] Universal quantum control through deep reinforcement learning
    Niu, Murphy Yuezhen
    Boixo, Sergio
    Smelyanskiy, Vadim N.
    Neven, Hartmut
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [48] Production flow control through the use of reinforcement learning
    Silva, Tome
    Azevedo, Americo
    29TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM 2019): BEYOND INDUSTRY 4.0: INDUSTRIAL ADVANCES, ENGINEERING EDUCATION AND INTELLIGENT MANUFACTURING, 2019, 38 : 194 - 202
  • [49] Universal quantum control through deep reinforcement learning
    Murphy Yuezhen Niu
    Sergio Boixo
    Vadim N. Smelyanskiy
    Hartmut Neven
    npj Quantum Information, 5
  • [50] Optimal fluctuations and the control of chaos
    Luchinsky, DG
    Beri, S
    Mannella, R
    McClintock, PVE
    Khovanov, IA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03): : 583 - 604