Seeing the forest and trees: whole-body and whole-brain imaging for circadian biology

被引:5
|
作者
Ode, K. L. [1 ,2 ]
Ueda, H. R. [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Syst Pharmacol, Tokyo 1130033, Japan
[2] RIKEN, Quantitat Biol Ctr, Osaka, Japan
来源
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
light-sheet microscope; single-cell resolution; tissue clearing; SINGLE-CELL RESOLUTION; SUPRACHIASMATIC NUCLEUS; DROSOPHILA-MELANOGASTER; ACTIVITY RHYTHM; NEUROMEDIN-S; MOUSE-BRAIN; CLOCK; TISSUE; RATS; EXPRESSION;
D O I
10.1111/dom.12511
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent advances in methods for making mammalian organs translucent have made possible whole-body fluorescent imaging with single-cell resolution. Because organ-clearing methods can be used to image the heterogeneous nature of cell populations, they are powerful tools to investigate the hierarchical organization of the cellular circadian clock, and how the clock synchronizes a variety of physiological activities. In particular, methods compatible with genetically encoded fluorescent reporters have the potential to detect circadian activity in different brain regions and the circadian-phase distribution across the whole body. In this review, we summarize the current methods and strategy for making organs translucent (removal of lipids, decolourization of haemoglobin and adjusting the refractive index of the specimen). We then discuss possible applications to circadian biology. For example, the coupling of circadian rhythms among different brain regions, brain activity in sleep-wake cycles and the role of migrating cells such as immune cells and cancer cells in chronopharmacology.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [31] Imaging whole-brain activity to understand behaviour
    Albert Lin
    Daniel Witvliet
    Luis Hernandez-Nunez
    Scott W. Linderman
    Aravinthan D. T. Samuel
    Vivek Venkatachalam
    Nature Reviews Physics, 2022, 4 : 292 - 305
  • [32] Unbiased, whole-brain imaging of neural circuits
    Nina Vogt
    Nature Methods, 2019, 16 : 142 - 142
  • [33] Rapid whole-brain quantitative MT imaging
    Afshari, Roya
    Santini, Francesco
    Heule, Rahel
    Meyer, Craig H.
    Pfeuffer, Josef
    Bieri, Oliver
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2025, 35 (01): : 69 - 77
  • [34] Unbiased, whole-brain imaging of neural circuits
    Vogt, Nina
    NATURE METHODS, 2019, 16 (02) : 142 - 142
  • [35] Imaging whole-brain activity to understand behaviour
    Lin, Albert
    Witvliet, Daniel
    Hernandez-Nunez, Luis
    Linderman, Scott W.
    Samuel, Aravinthan D. T.
    Venkatachalam, Vivek
    NATURE REVIEWS PHYSICS, 2022, 4 (05) : 292 - 305
  • [36] Whole-Body Overdiagnosis: Perils of Whole-Body MRI
    Jha, Saurabh
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2024, 21 (11) : 1819 - 1821
  • [37] Imaging inmultiplemyeloma. Skeletal survey, whole-body CT, whole-body MRI or PET?
    Mosebach, Jennifer
    Beuthien-Baumann, Bettina
    Schlemmer, Heinz-Peter
    Delorme, Stefan
    ONKOLOGE, 2018, 24 (08): : 584 - 595
  • [38] COMPARISON OF A NEW WHOLE-BODY SCANNER WITH A LARGE CRYSTAL SCANNING CAMERA IN WHOLE-BODY IMAGING
    ELL, PJ
    MYERS, MJ
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1977, 2 (04): : 281 - 284
  • [39] Whole-body magnetic resonance imaging (WBMRI) versus whole-body computed tomography (WBCT) for myeloma imaging and staging
    Karla M. Treitl
    Jens Ricke
    Andrea Baur-Melnyk
    Skeletal Radiology, 2022, 51 : 43 - 58
  • [40] Whole-body magnetic resonance imaging (WBMRI) versus whole-body computed tomography (WBCT) for myeloma imaging and staging
    Treitl, Karla M.
    Ricke, Jens
    Baur-Melnyk, Andrea
    SKELETAL RADIOLOGY, 2022, 51 (01) : 43 - 58