Correspondence between a phase-field theory and a sharp-interface theory for crystal growth

被引:13
|
作者
Fried, E
机构
[1] Dept. of Theor. and Appl. Mechanics, Univ. Illinois at Urbana-Champaign, Urbana
关键词
D O I
10.1007/s001610050054
中图分类号
O414.1 [热力学];
学科分类号
摘要
A matched asymptotic analysis is used to show that, under certain constitutive hypotheses and a particular scaling, a recently developed phase-field theory corresponds to a sharp-interface theory for crystal growth that accounts for orientation dependence in the crystalline surface energy density as well as orientation and surface normal velocity dependence in the crystalline surface mobility.
引用
收藏
页码:33 / 60
页数:28
相关论文
共 50 条
  • [21] An order-parameter-based theory as a regularization of a sharp-interface theory for solid-solid phase transitions
    Fried E.
    Grach G.
    Archive for Rational Mechanics and Analysis, 1997, 138 (4) : 355 - 404
  • [22] Sharp interface limits of phase-field models
    Elder, KR
    Grant, M
    Provatas, N
    Kosterlitz, JM
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [23] Classical nucleation theory in the phase-field crystal model
    Jreidini, Paul
    Kocher, Gabriel
    Provatas, Nikolas
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [24] Application of the phase-field model to p-n junction. Comparison with the conventional sharp-interface model
    Popov, DI
    SEVENTH INTERNATIONAL WORKSHOP ON NONDESTRUCTIVE TESTING AND COMPUTER SIMULATIONS IN SCIENCE AND ENGINEERING, 2004, 5400 : 20 - 23
  • [25] Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines
    Xu, Xianmin
    Di, Yana
    Yu, Haijun
    JOURNAL OF FLUID MECHANICS, 2018, 849 : 805 - 833
  • [26] Regularized anisotropic motion-by-curvature in phase-field theory: Interface phase separation of crystal surfaces
    Philippe, Thomas
    Henry, Herve
    Plapp, Mathis
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [27] Sharp interface tracking using the phase-field equation
    Sun, Y.
    Beckermann, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 220 (02) : 626 - 653
  • [28] Corners in phase-field theory
    Philippe, Thomas
    PHYSICAL REVIEW E, 2021, 103 (03)
  • [29] Phase-field gradient theory
    Espath, Luis
    Calo, Victor
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [30] Phase-field gradient theory
    Luis Espath
    Victor Calo
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72