Heteroatom doped carbon nanosheets from waste tires as electrode materials for electrocatalytic oxygen reduction reaction: Effect of synthesis techniques on properties and activity

被引:21
|
作者
Veksha, Andrei [1 ]
Latiff, Naziah Mohamad [1 ]
Chen, Wenqian [1 ]
Ng, Jun Eng [1 ,2 ]
Lisak, Grzegorz [1 ,2 ]
机构
[1] Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Residues & Resource Reclamat Ctr R3C, 1 Cleantech Loop,Clean Tech One, Singapore 637141, Singapore
[2] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639798, Singapore
关键词
Carbon nanosheets; Heteroatom doping; Nickel; Oxygen reduction reaction; Powdered catalyst; Waste tire; METAL-FREE ELECTROCATALYST; CHEMICAL-VAPOR-DEPOSITION; POROUS CARBON; SCRAP TIRES; GRAPHENE; NITROGEN; SULFUR; NANOTUBES; PYROLYSIS; SITES;
D O I
10.1016/j.carbon.2020.05.075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effective method for synthesis of heteroatom doped carbon nanosheets (CNS) from waste tires was developed. The process employed NiO loaded CaCO3 catalyst for catalytic chemical vapor deposition (CCVD) of the CNS from the non-condensable pyrolysis gas. The promotion of CaCO3 with NiO had beneficial effect on carbon growth compared to pure CaCO3, increasing the carbon yield by 2.8 and 8.0 times for the CCVD at 700 and 750 degrees C, respectively. On the contrary, the morphology and structure of synthesized S,O-doped CNS as well as oxygen reduction reaction (ORR) electrocatalytic activity were not influenced by the NiO addition. Based on the carbon yields and ORR electrocatalytic activities, the preferred CCVD temperature was 700-750 degrees C, resulting in the CNS with the ORR peak reduction potentials of -0.217 V to -0.220 V (versus-0.167 V for Pt electrode). The improvement of CCVD process was proposed decreasing the ORR peak reduction potential to -0.191 V. A mixture of NH3 and H2O was added to pyrolysis gas, promoting the development of mesoporosity and incorporation of N into the material structure. The developed technique is a viable solution for the conversion of non-condensable gases from tire pyrolysis into S,N,O-doped CNS for ORR. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
  • [41] A Gram Scale Soft-Template Synthesis of Heteroatom Doped Nanoporous Hollow Carbon Spheres for Oxygen Reduction Reaction
    Kang, Jisue
    Kim, Jong Gyeong
    Han, Sunghoon
    Cho, Youngin
    Pak, Chanho
    NANOMATERIALS, 2023, 13 (18)
  • [42] Preparation of nitrogen-doped carbon nanoblocks with high electrocatalytic activity for oxygen reduction reaction in alkaline solution
    Zhang, Tingting
    He, Chuansheng
    Li, Linbo
    Lin, Yuqing
    CHINESE JOURNAL OF CATALYSIS, 2016, 37 (08) : 1275 - 1282
  • [43] The electrocatalytic activity of pomelo peel-derived nitrogen-doped carbon material for oxygen reduction reaction
    Yang, Jingjing
    Zheng, Shengbiao
    Tong, Wenjing
    Zhang, Xiang
    Tang, Jing
    Guo, Jiahao
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2024,
  • [44] Synthesis and electrocatalytic properties of M (Fe, Co),N co-doped porous carbon frameworks for efficient oxygen reduction reaction
    Zhu, Zhaoqi
    Cui, Jie
    Cao, Xiaoying
    Yang, Lijuan
    Sun, Hanxue
    Liang, Weidong
    Li, Jiyan
    Li, An
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (16) : 9504 - 9516
  • [45] Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon
    Li, Zeyu
    Gao, Qiuming
    Qian, Weiwei
    Tian, Weiqian
    Zhang, Hang
    Zhang, Qiang
    Liu, Zhengping
    SCIENTIFIC REPORTS, 2018, 8
  • [46] A Nitrogen-Doped Polyaniline Carbon with High Electrocatalytic Activity and Stability for the Oxygen Reduction Reaction in Fuel Cells
    Zhong, Hexiang
    Zhang, Huamin
    Xu, Zhuang
    Tang, Yongfu
    Mao, Jingxia
    CHEMSUSCHEM, 2012, 5 (09) : 1698 - 1702
  • [47] Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction
    Zhang, Shiming
    Chen, Shengli
    JOURNAL OF POWER SOURCES, 2013, 240 : 60 - 65
  • [48] Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction
    Wang, Wenxi
    Shi, Yang
    Li, Minchan
    Wang, Zhenyu
    Wu, Shaofei
    Lyu, Fucong
    Shang, Chaoqun
    Lu, Zhouguang
    RSC ADVANCES, 2016, 6 (112): : 110758 - 110764
  • [49] B, N Co-Doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction
    Zeng, Kai
    Su, Jianmin
    Cao, Xuecheng
    Zheng, Xiangjun
    Li, Xiaowei
    Tian, Jing-Hua
    Jin, Chao
    Yang, Ruizhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 824 (824)
  • [50] Ultrahigh Oxygen Reduction Reaction Electrocatalytic Activity and Stability over Hierarchical Nanoporous N-doped Carbon
    Zeyu Li
    Qiuming Gao
    Weiwei Qian
    Weiqian Tian
    Hang Zhang
    Qiang Zhang
    Zhengping Liu
    Scientific Reports, 8