Linearization through symmetries for discrete equations

被引:4
|
作者
Levi, D. [1 ]
Scimiterna, C.
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
关键词
LIE SYMMETRIES;
D O I
10.1088/1751-8113/46/32/325204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that one can devise through the symmetry approach a procedure to check the linearizability of a difference equation via a point or a discrete Cole-Hopf transformation. If the equation is linearizable, then the symmetry provides the linearizing transformation. At the end, we present a few examples of applications for equations defined on four lattice points.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Generalized Calogero models through reductions by discrete symmetries
    Polychronakos, AP
    NUCLEAR PHYSICS B, 1999, 543 (1-2) : 485 - 498
  • [42] Type II hidden symmetries through weak symmetries for some wave equations
    Gandarias, M. L.
    Bruzon, M. S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 291 - 299
  • [43] On Linearization of Riccati Differential Equations through Variable Transformations
    Kittaka, Tsubasa
    Hori, Noriyuki
    2008 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-4, 2008, : 2153 - 2158
  • [44] Conjugate chains of discrete symmetries in 1+2 nonlinear equations
    A. V. Yurov
    Theoretical and Mathematical Physics, 1999, 119 : 731 - 738
  • [45] Discrete q-derivatives and symmetries of q-difference equations
    Levi, D
    Negro, J
    del Olmo, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (10): : 3459 - 3473
  • [46] Symmetries and integrability of discrete equations defined on a black-white lattice
    Xenitidis, P. D.
    Papageorgiou, V. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (45)
  • [47] Relationships between symmetries depending on arbitrary functions and integrals of discrete equations
    Startsev, S. Ya
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
  • [48] Conjugate chains of discrete symmetries in 1+2 nonlinear equations
    Yurov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 119 (03) : 731 - 738
  • [49] TODA AND VOLTERRA LATTICE EQUATIONS FROM DISCRETE SYMMETRIES OF KP HIERARCHIES
    ARATYN, H
    FERREIRA, LA
    GOMES, JF
    ZIMERMAN, AH
    PHYSICS LETTERS B, 1993, 316 (01) : 85 - 92
  • [50] Extending trinity to the scalar sector through discrete flavoured symmetries
    Alves, Joao M.
    Botella, Francisco J.
    Branco, Gustavo C.
    Nebot, Miguel
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (08):