Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings

被引:176
|
作者
Mishra, Pallavi [1 ]
Bhoomika, Kumari [1 ]
Dubey, R. S. [1 ]
机构
[1] Banaras Hindu Univ, Dept Biochem, Fac Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Salinity; Salt tolerance; Oxidative stress; Antioxidative defense; Oryza sativa L; GLUTATHIONE-REDUCTASE; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; SUPEROXIDE-DISMUTASE; ASCORBATE PEROXIDASE; SHORT-TERM; MONODEHYDROASCORBATE REDUCTASE; WHEAT SEEDLINGS; WATER-DEFICIT; ACTIVE OXYGEN;
D O I
10.1007/s00709-011-0365-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present investigation evaluated the ability of an antioxidative defense system in terms of the tolerance against salinity-induced oxidative stress and also explored a possible relationship between the status of the components of an antioxidative defense system and the salt tolerance in Indica rice (Oryza sativa L.) genotypes. When the seedlings of a salt-sensitive cultivar was grown in sand cultures containing different NaCl concentrations (7 and 14 dS m(-1)) for 5-20 days, a substantial increase was observed in the rate of superoxide anion (O (2) (center dot-) ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) which indicated an enhancement in lipid peroxidation. A declination in the level of thiol clearly indicated an increase in the protein oxidation as well as a decline in the reduced forms of ascorbate (AsA) and glutathione (GSH) and the ratios of their reduced to oxidized forms occurred in the salt-sensitive seedlings. Similar treatment caused a very little alteration or no change in the levels of these components in the seedlings of salt-tolerant cultivar. The activity of antioxidative enzymes superoxide dismutase (SOD), its isoform Cu/Zn-SOD and ascorbate peroxidase (APX) increased in both the cultivars against salinity. In salt-sensitive seedlings, the activity of the various enzymes, guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) increased at moderate salinity treatment of 7 dS m(-1) NaCl while the activities of these enzymes declined with higher salinity level of 14 dS m(-1) NaCl. However, a consistent increase was observed in the activities of these enzymes of salt-tolerant seedlings with an increase in the duration and the level of the salinity treatment. The results suggest that a higher status of antioxidants (AsA and GSH) and a coordinated higher activity of the enzymes (SOD, CAT, GPX, APX, and GR) can serve as the major determinants in the model for depicting salt tolerance in Indica rice seedlings.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [31] Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes
    Neto, ADD
    Prisco, JT
    Enéas, J
    de Abreu, CEB
    Gomes, E
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (01) : 87 - 94
  • [32] Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains
    Srivastava, Amrita
    Singh, Anumeha
    Singh, Satya S.
    Mishra, Arun K.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2017, 52 (05): : 420 - 428
  • [33] No support for purported effects of salt-tolerant stream invertebrates on the salinity responses of salt-sensitive stream invertebrates
    Chessman, Bruce C.
    MARINE AND FRESHWATER RESEARCH, 2021, 72 (03) : 439 - 442
  • [34] The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)
    Lee, DH
    Kim, YS
    Lee, CB
    JOURNAL OF PLANT PHYSIOLOGY, 2001, 158 (06) : 737 - 745
  • [35] Photosynthetic Responses to Salt Stress in Two Rice (Oryza sativa L.) Varieties
    Zuo, Guanqiang
    Zhang, Rui
    Feng, Naijie
    Zheng, Dianfeng
    AGRONOMY-BASEL, 2024, 14 (09):
  • [36] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [37] Regulation of ammonium accumulation during salt stress in rice (Oryza sativa L.) seedlings
    Nguyen, HTT
    Shim, IS
    Kobayashi, K
    Usui, K
    PLANT PRODUCTION SCIENCE, 2005, 8 (04) : 397 - 404
  • [38] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Denver I. Walitang
    Chang-Gi Kim
    Kiyoon Kim
    Yeongyeong Kang
    Young Kee Kim
    Tongmin Sa
    BMC Plant Biology, 18
  • [39] Intercropping Salt-Sensitive Lactuca sativa L. and Salt-Tolerant Salsola soda L. in a Saline Hydroponic Medium: An Agronomic and Physiological Assessment
    Atzori, Giulia
    Nissim, Werther Guidi
    Mancuso, Stefano
    Palm, Emily
    PLANTS-BASEL, 2022, 11 (21):
  • [40] Transcriptional analysis of salt-responsive genes to salinity stress in three salt-tolerant and salt-sensitive Barely cultivars
    Mohammadi, Seyyed Abolghasem
    Hamian, Samira
    Vahed, Mohammad Moghaddam
    Bandehagh, Ali
    Gohari, Gholamreza
    Janda, Tibor
    SOUTH AFRICAN JOURNAL OF BOTANY, 2021, 141 : 457 - 465