The Green rings of the generalized Taft Hopf algebras

被引:47
|
作者
Li, Libin [1 ]
Zhang, Yinhuo [2 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Peoples R China
[2] Univ Hasselt, Dept WNI, B-3590 Hasselt, Belgium
来源
关键词
Green ring; indecomposable module; generalized Taft algebra; nilpotent element; NILPOTENT ELEMENTS; ORDER; REPRESENTATIONS;
D O I
10.1090/conm/585/11618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Green ring r(H-n,H-d) of the generalized Taft algebra H-n,H-d, extending the results of Chen, Van Oystaeyen and Zhang (to appear in Proc. of AMS). We shall determine all nilpotent elements of the Green ring r(H-n,H-d). It turns out that each nilpotent element in r(H-n,H-d) can be written as a sum of indecomposable projective representations. The Jacobson radical J(r(H-n,H-d)) of r(H-n,H-d) is generated by one element, and its rank is n - n/d. Moreover, we will present all the finite dimensional indecomposable representations over the complexified Green ring R(H-n,H-d) of H-n,H-d. Our analysis is based on the decomposition of the tensor product of indecomposable representations and the observation of the solutions for the system of equations associated to the generating relations of the Green ring r(H-n,H-d).
引用
收藏
页码:275 / +
页数:3
相关论文
共 50 条
  • [21] Partial (co)actions of Taft and Nichols Hopf algebras on their base fields
    Fonseca, Graziela
    Martini, Grasiela
    Silva, Leonardo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (07) : 1471 - 1496
  • [22] Generalized Poincare algebras, Hopf algebras and κ-Minkowski spacetime
    Kovacevic, D.
    Meljanac, S.
    Pachol, A.
    Strajn, R.
    PHYSICS LETTERS B, 2012, 711 (01) : 122 - 127
  • [23] A generalized power map for Hopf algebras
    Kashina, Y
    HOPF ALGEBRAS AND QUANTUM GROUPS, PROCEEDINGS, 2000, 209 : 159 - 175
  • [24] Bialgebra cohomology of the duals of a class of generalized Taft algebras
    Taillefer, R.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) : 1415 - 1420
  • [25] HOPF-ALGEBRAS OVER NUMBER RINGS
    CHENG, YC
    JOURNAL OF ALGEBRA, 1987, 111 (02) : 431 - 452
  • [26] Representation rings of classical groups and Hopf algebras
    Zhou, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (05) : 461 - 477
  • [27] BICROSSED PRODUCTS OF GENERALIZED TAFT ALGEBRA AND GROUP ALGEBRAS
    Wang, Dingguo
    Cheng, Xiangdong
    Lu, Daowei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) : 801 - 816
  • [28] Bicrossed Products of Generalized Taft Algebra and Group Algebras
    Dingguo Wang
    Xiangdong Cheng
    Daowei Lu
    Czechoslovak Mathematical Journal, 2022, 72 : 801 - 816
  • [29] On the duality of generalized Lie and Hopf algebras
    Goyvaerts, I.
    Vercruysse, J.
    ADVANCES IN MATHEMATICS, 2014, 258 : 154 - 190
  • [30] THE GREEN RINGS OF MINIMAL HOPF QUIVERS
    Huang, Hua-Lin
    Yang, Yuping
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 107 - 141