On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data

被引:7
|
作者
Zeng, Jing [1 ]
Xu, Peng [2 ]
Fu, Hongyong [2 ]
机构
[1] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing Key Lab Social Econ & Appl Stat, Chongqing, Peoples R China
[2] Southwest Univ Polit Sci & Law, China Res Inst Enterprise Governed Law, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximate optimal solutions; Mixed type duality; Fractional semi-infinite optimization; PROGRAMMING PROBLEMS; DUALITY;
D O I
10.1186/s13660-019-1997-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides some new results on robust approximate optimal solutions of a fractional semi-infinite optimization problem under uncertainty data in the constraint functions. By employing conjugate analysis and robust optimization approach (worst-case approach), we obtain some necessary and sufficient optimality conditions for robust approximate optimal solutions of such a fractional semi-infinite optimization problem. In addition, we state a mixed type approximate dual problem to the reference problem and obtain some robust duality properties between them. The results obtained in this paper improve the corresponding results in the literature.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [31] Robust linear semi-infinite programming duality under uncertainty
    M. A. Goberna
    V. Jeyakumar
    G. Li
    M. A. López
    Mathematical Programming, 2013, 139 : 185 - 203
  • [32] Painlevé–Kuratowski stability of approximate efficient solutions for perturbed semi-infinite vector optimization problems
    Z. Y. Peng
    X. B. Li
    X. J. Long
    X. D. Fan
    Optimization Letters, 2018, 12 : 1339 - 1356
  • [33] On the stability of solutions for semi-infinite vector optimization problems
    Peng, Zai-Yun
    Peng, Jian-Wen
    Long, Xian-Jun
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 55 - 69
  • [34] On the stability of solutions for semi-infinite vector optimization problems
    Zai-Yun Peng
    Jian-Wen Peng
    Xian-Jun Long
    Jen-Chih Yao
    Journal of Global Optimization, 2018, 70 : 55 - 69
  • [35] A DIFFUSION PROBLEM ON A SEMI-INFINITE INTERVAL - APPROXIMATE SOLUTIONS AND PARAMETER ESTIMATIONS
    CHIEN, V
    PROCTOR, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1988, 129 (01) : 293 - 305
  • [36] Optimality Conditions of Approximate Solutions for Nonsmooth Semi-infinite Programming Problems
    Long X.-J.
    Xiao Y.-B.
    Huang N.-J.
    Journal of the Operations Research Society of China, 2018, 6 (02) : 289 - 299
  • [37] Approximate proper efficiencies in nonsmooth semi-infinite multiobjective optimization problems
    Pham, Thanh-Hung
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 1163 - 1186
  • [38] Painleve-Kuratowski stability of approximate efficient solutions for perturbed semi-infinite vector optimization problems
    Peng, Z. Y.
    Li, X. B.
    Long, X. J.
    Fan, X. D.
    OPTIMIZATION LETTERS, 2018, 12 (06) : 1339 - 1356
  • [39] On approximate quasi Pareto solutions in nonsmooth semi-infinite interval-valued vector optimization problems
    Nguyen Huy Hung
    Hoang Ngoc Tuan
    Nguyen Van Tuyen
    APPLICABLE ANALYSIS, 2022, : 2432 - 2448
  • [40] ε-Optimal Solutions in Nonconvex Semi-Infinite Programs with Support Functions
    Kim, Do Sang
    Ta Quang Son
    FIXED POINT THEORY AND APPLICATIONS, 2011,