Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy

被引:11
|
作者
Isser, Ariel [1 ,2 ]
Silver, Aliyah B. [2 ,3 ,4 ]
Pruitt, Hawley C. [5 ,6 ]
Mass, Michal [1 ,4 ]
Elias, Emma H. [7 ]
Aihara, Gohta [1 ]
Kang, Si-Sim [8 ]
Bachmann, Niklas [8 ]
Chen, Ying-Yu [8 ]
Leonard, Elissa K. [1 ,2 ,4 ]
Bieler, Joan G. [2 ,8 ]
Chaisawangwong, Worarat [2 ,8 ]
Choy, Joseph [2 ,4 ,6 ,9 ]
Shannon, Sydney R. [1 ,2 ,4 ]
Gerecht, Sharon [1 ,5 ,6 ,9 ,10 ]
Weber, Jeffrey S. [11 ]
Spangler, Jamie B. [1 ,4 ,5 ,9 ,10 ,12 ,13 ]
Schneck, Jonathan P. [1 ,2 ,8 ,10 ,14 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Sch Med, Baltimore, MD 21287 USA
[2] Johns Hopkins Univ, Johns Hopkins Translat ImmunoEngn Ctr, Sch Med, Baltimore, MD 21287 USA
[3] Johns Hopkins Univ, Dept Mol Microbiol & Immunol, Bloomberg Sch Publ Hlth, Baltimore, MD 21287 USA
[4] Johns Hopkins Univ, Translat Tissue Engn Ctr, Sch Med, Baltimore, MD 21287 USA
[5] Johns Hopkins Univ, Dept Chem & Biomol Engn, Whiting Sch Engn, Baltimore, MD 21287 USA
[6] Johns Hopkins Univ, Inst NanoBioTechnol, Whiting Sch Engn, Baltimore, MD 21287 USA
[7] Johns Hopkins Univ, Dept Biol, Krieger Sch Arts & Sci, Baltimore, MD 21287 USA
[8] Johns Hopkins Univ, Dept Pathol, Sch Med, Baltimore, MD 21287 USA
[9] Johns Hopkins Univ, Dept Mat Sci & Engn, Whiting Sch Engn, Baltimore, MD 21287 USA
[10] Johns Hopkins Univ, Dept Oncol, Sch Med, Baltimore, MD 21287 USA
[11] NYU Langone Hlth, Laura & Isaac Perlmutter Canc Ctr, New York, NY 10016 USA
[12] Johns Hopkins Univ, Wilmer Eye Inst, Dept Ophthalmol, Sch Med, Baltimore, MD 21287 USA
[13] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Bloomberg Kimmel Inst Canc Immunotherapy, Sch Med, Baltimore, MD 21287 USA
[14] Johns Hopkins Univ, Inst Cell Engn, Sch Med, Baltimore, MD 21287 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 美国国家卫生研究院;
关键词
ANTIGEN-PRESENTING CELLS; EX-VIVO EXPANSION; DENDRITIC CELLS; CD4+T CELLS; RECEPTOR; IL-10; LYMPHOCYTES; ACTIVATION; MELANOMA; ENRICHMENT;
D O I
10.1038/s41467-022-33597-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adoptive cell therapies (ACT) hold promise for cancer immunotherapy, but optimization is still an ongoing process. Here the authors report CD4-targeted, nanoparticle-based artificial antigen-presenting cells that expand CD4(+) T cells capable of lysing tumor cell lysis in vitro, and CD8(+) T cells showing antitumor activity in a mouse melanoma model. Helper (CD4(+)) T cells perform direct therapeutic functions and augment responses of cells such as cytotoxic (CD8(+)) T cells against a wide variety of diseases and pathogens. Nevertheless, inefficient synthetic technologies for expansion of antigen-specific CD4(+) T cells hinders consistency and scalability of CD4(+) T cell-based therapies, and complicates mechanistic studies. Here we describe a nanoparticle platform for ex vivo CD4(+) T cell culture that mimics antigen presenting cells (APC) through display of major histocompatibility class II (MHC II) molecules. When combined with soluble co-stimulation signals, MHC II artificial APCs (aAPCs) expand cognate murine CD4(+) T cells, including rare endogenous subsets, to induce potent effector functions in vitro and in vivo. Moreover, MHC II aAPCs provide help signals that enhance antitumor function of aAPC-activated CD8(+) T cells in a mouse tumor model. Lastly, human leukocyte antigen class II-based aAPCs expand rare subsets of functional, antigen-specific human CD4(+) T cells. Overall, MHC II aAPCs provide a promising approach for harnessing targeted CD4(+) T cell responses.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo
    Martin, B
    Banz, A
    Bienvenu, B
    Cordier, C
    Dautigny, N
    Bécourt, C
    Lucas, B
    JOURNAL OF IMMUNOLOGY, 2004, 172 (06): : 3391 - 3398
  • [32] SELECTIVE DIFFERENTIATION OF CD4+ T-HELPER CELL SUBSETS
    SCOTT, P
    CURRENT OPINION IN IMMUNOLOGY, 1993, 5 (03) : 391 - 397
  • [33] Cellular and population plasticity of helper CD4+ T cell responses
    Magombedze, Gesham
    Reddy, Pradeep B. J.
    Eda, Shigetoshi
    Ganusov, Vitaly V.
    FRONTIERS IN PHYSIOLOGY, 2013, 4
  • [34] Differentiation of CD4+ T-helper-cell subsets in leishmaniasis
    Scott, P
    T-CELL SUBSETS AND CYTOKINES INTERPLAY IN INFECTIOUS DISEASES, 1996, : 108 - 115
  • [35] CD4+ T Helper Cell Plasticity in Infection, Inflammation, and Autoimmunity
    Huber, Samuel
    Gagliani, Nicola
    O'Connor, William, Jr.
    Geginat, Jens
    Caprioli, Flavio
    MEDIATORS OF INFLAMMATION, 2017, 2017
  • [36] CD4+ T cell help in cancer immunology and immunotherapy
    Jannie Borst
    Tomasz Ahrends
    Nikolina Bąbała
    Cornelis J. M. Melief
    Wolfgang Kastenmüller
    Nature Reviews Immunology, 2018, 18 : 635 - 647
  • [37] CD4+ T cell help in cancer immunology and immunotherapy
    Borst, Jannie
    Ahrends, Tomasz
    Babala, Nikolina
    Melief, Cornelis J. M.
    Kastenmueller, Wolfgang
    NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) : 635 - 647
  • [38] Computational modeling of complex bioenergetic mechanisms that modulate CD4+ T cell effector and regulatory functions
    Ryan Baker
    Raquel Hontecillas
    Nuria Tubau-Juni
    Andrew J. Leber
    Shiv Kale
    Josep Bassaganya-Riera
    npj Systems Biology and Applications, 8
  • [39] Modeling the CD8+ T effector to memory transition in adoptive T-cell antitumor immunotherapy
    Rolle, Cleo E.
    Carrio, Roberto
    Malek, Thomas R.
    CANCER RESEARCH, 2008, 68 (08) : 2984 - 2992
  • [40] T cell receptor-triggered nuclear actin network formation drives CD4+ T cell effector functions
    Tsopoulidis, N.
    Kaw, S.
    Laketa, V
    Kutscheidt, S.
    Baarlink, C.
    Stolp, B.
    Grosse, R.
    Fackler, O. T.
    SCIENCE IMMUNOLOGY, 2019, 4 (31)