Analysis of Protease Activity Using Quantum Dots and Resonance Energy Transfer

被引:85
|
作者
Kim, Gae Baik [1 ]
Kim, Young-Pil [1 ]
机构
[1] Hanyang Univ, Dept Life Sci, Seoul 133791, South Korea
来源
THERANOSTICS | 2012年 / 2卷 / 02期
基金
新加坡国家研究基金会;
关键词
protease; quantum dot; energy transfer; BRET; FRET; multiplex; nanoparticle; luciferase; quencher; MATRIX-METALLOPROTEINASE INHIBITORS; SEMICONDUCTOR NANOCRYSTALS; GOLD NANOPARTICLES; CANCER-THERAPY; PROTEOLYTIC ACTIVITY; FUTURE-PROSPECTS; SERUM-LEVELS; FLUORESCENCE; FRET; ASSAY;
D O I
10.7150/thno.3476
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
This review demonstrates the detection of protease activity based on the energy transfer of quantum dots (QDs). By incorporation of varying protease substrates into designed QD probes both in fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) system, proteolytic activity led to changes in the energy transfer efficiency. Especially due to the superior properties of QDs, it can be served as an excellent probe for a multiplexed and high-throughput protease assay with high sensitivity. It is anticipated that the QD-based FRET/BRET probes will have a great potential for dissecting the fundamental roles of proteases and designing potential protease inhibitors as therapeutic drugs in biology and nanomedicine.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
  • [31] Resonance energy transfer in a dense array of II-VI quantum dots
    Shubina, T. V.
    Belyaev, K. G.
    Semina, M. A.
    Rodina, A. V.
    Golovatenko, A. A.
    Toropov, A. A.
    Sorokin, S. V.
    Sedova, I. V.
    Davydov, V. Yu.
    Smirnov, A. N.
    Kop'ev, P. S.
    Ivanov, S. V.
    PHYSICS OF THE SOLID STATE, 2016, 58 (11) : 2256 - 2260
  • [32] The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay
    Hu, Bo
    Zhang, Li-Pei
    Chen, Mei-Ling
    Chen, Ming-Li
    Wang, Jian-Hua
    BIOSENSORS & BIOELECTRONICS, 2012, 32 (01): : 82 - 88
  • [33] Chemiluminescence resonance energy transfer in the luminol-CdTe quantum dots conjugates
    Li, Zheng
    Wang, Yongxian
    Zhang, Guoxin
    Xu, Wanbang
    Han, Yanjiang
    JOURNAL OF LUMINESCENCE, 2010, 130 (06) : 995 - 999
  • [34] Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine
    He Zhi-Cong
    Li Fang
    Li Mu-Ye
    Wei Lai
    ACTA PHYSICA SINICA, 2015, 64 (04)
  • [35] Nonradiative resonance energy transfer in systems containing quantum dots and its application
    S. B. Brichkin
    High Energy Chemistry, 2013, 47 : 277 - 285
  • [36] A Nonenzymatic Chemiluminescent Reaction Enabling Chemiluminescence Resonance Energy Transfer to Quantum Dots
    Zhao, Shulin
    Huang, Yong
    Liu, Rongjun
    Shi, Ming
    Liu, Yi-Ming
    CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (21) : 6142 - 6145
  • [37] Fluorescence Resonance Energy Transfer Study Between ZnS Quantum Dots and Fluoranthene
    Rajkumari, Nandini Priyam
    Roy, Camelia
    Goswami, Pallabi
    CHEMISTRYSELECT, 2024, 9 (05):
  • [38] A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors
    Vannoy, Charles H.
    Chong, Lori
    Le, Connie
    Krull, Ulrich J.
    ANALYTICA CHIMICA ACTA, 2013, 759 : 92 - 99
  • [39] Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Forster Resonance Energy Transfer Relay
    Algar, W. Russ
    Malanoski, Anthony P.
    Susumu, Kimihiro
    Stewart, Michael H.
    Hildebrandt, Niko
    Medintz, Igor L.
    ANALYTICAL CHEMISTRY, 2012, 84 (22) : 10136 - 10146
  • [40] A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer
    Biswas, Payal
    Cella, Lakshmi N.
    Kang, Seung Hyun
    Mulchandani, Ashok
    Yates, Marylynn V.
    Chen, Wilfred
    CHEMICAL COMMUNICATIONS, 2011, 47 (18) : 5259 - 5261