Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes

被引:31
|
作者
Saw, Jimmy H. [1 ]
Spang, Anja [1 ]
Zaremba-Niedzwiedzka, Katarzyna [1 ]
Juzokaite, Lina [1 ]
Dodsworth, Jeremy A. [2 ]
Murugapiran, Senthil K. [2 ]
Colman, Dan R. [3 ]
Takacs-Vesbach, Cristina [3 ]
Hedlund, Brian P. [2 ]
Guy, Lionel [4 ]
Ettema, Thijs J. G. [1 ]
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala, Sweden
[2] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
[3] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[4] Uppsala Univ, Dept Med Biochem & Microbiol, Uppsala, Sweden
基金
美国国家科学基金会; 瑞典研究理事会; 欧洲研究理事会;
关键词
Archaea; eukaryogenesis; metagenomics; microbial diversity; single-cell genomics; tree of life; SINGLE-CELL; PHYLOGENETIC CLASSIFICATION; COMMON ANCESTOR; ORIGIN; GENOMES; METAGENOME; EVOLUTION; SUPERTREES; DIVERSITY; SEDIMENTS;
D O I
10.1098/rstb.2014.0328
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The origin of eukaryotes represents an enigmatic puzzle, which is still lacking a number of essential pieces. Whereas it is currently accepted that the process of eukaryogenesis involved an interplay between a host cell and an alphaproteo-bacterial endosymbiont, we currently lack detailed information regarding the identity and nature of these players. A number of studies have provided increasing support for the emergence of the eukaryotic host cell from within the archaeal domain of life, displaying a specific affiliation with the archaeal TACK superphylum. Recent studies have shown that genomic exploration of yet-uncultivated archaea, the so-called archaeal 'dark matter', is able to provide unprecedented insights into the process of eukaryogenesis. Here, we provide an overview of state-of-the-art cultivation-independent approaches, and demonstrate how these methods were used to obtain draft genome sequences of several novel members of the TACK superphylum, including Lokiarchaeum, two representatives of the Miscellaneous Crenarchaeotal Group (Bathyarchaeota), and a Korarchaeum-related lineage. The maturation of cultivation-independent genomics approaches, as well as future developments in next-generation sequencing technologies, will revolutionize our current view of microbial evolution and diversity, and provide profound new insights into the early evolution of life, including the enigmatic origin of the eukaryotic cell.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A practical implementation of large transcriptomic data analysis to resolve cryptic species diversity problems in microbial eukaryotes
    Yonas I. Tekle
    Fiona C. Wood
    BMC Evolutionary Biology, 18
  • [32] Exploring dark matter microphysics with galaxy surveys
    Escudero, Miguel
    Mena, Olga
    Vincent, Aaron C.
    Wilkinson, Ryan J.
    Boehm, Celine
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (09):
  • [33] Exploring Dark Matter with Milky Way Substructure
    Kuhlen, Michael
    Madau, Piero
    Silk, Joseph
    SCIENCE, 2009, 325 (5943) : 970 - 973
  • [34] Microbial Eukaryotes Associated With Sediments in Deep-Sea Cold Seeps
    Zhang, Yue
    Huang, Ning
    Wang, Minxiao
    Liu, Hongbin
    Jing, Hongmei
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [35] A network approach to elucidate and prioritize microbial dark matter in microbial communities
    Tatyana Zamkovaya
    Jamie S. Foster
    Valérie de Crécy-Lagard
    Ana Conesa
    The ISME Journal, 2021, 15 : 228 - 244
  • [36] A network approach to elucidate and prioritize microbial dark matter in microbial communities
    Zamkovaya, Tatyana
    Foster, Jamie S.
    de Crecy-Lagard, Valerie
    Conesa, Ana
    ISME JOURNAL, 2021, 15 (01): : 228 - 244
  • [37] Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations
    Xie, Sitan
    Lipp, Julius S.
    Wegener, Gunter
    Ferdelman, Timothy G.
    Hinrichs, Kai-Uwe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (15) : 6010 - 6014
  • [38] Insights into the phylogeny and coding potential of microbial dark matter
    Rinke, Christian
    Schwientek, Patrick
    Sczyrba, Alexander
    Ivanova, Natalia N.
    Anderson, Iain J.
    Cheng, Jan-Fang
    Darling, Aaron
    Malfatti, Stephanie
    Swan, Brandon K.
    Gies, Esther A.
    Dodsworth, Jeremy A.
    Hedlund, Brian P.
    Tsiamis, George
    Sievert, Stefan M.
    Liu, Wen-Tso
    Eisen, Jonathan A.
    Hallam, Steven J.
    Kyrpides, Nikos C.
    Stepanauskas, Ramunas
    Rubin, Edward M.
    Hugenholtz, Philip
    Woyke, Tanja
    NATURE, 2013, 499 (7459) : 431 - 437
  • [39] New aminopeptidase from "microbial dark matter" archaeon
    Michalska, Karolina
    Steen, Andrew D.
    Chhor, Gekleng
    Endres, Michael
    Webber, Austen T.
    Bird, Jordan
    Lloyd, Karen G.
    Joachimiak, Andrzej
    FASEB JOURNAL, 2015, 29 (09): : 4071 - 4079
  • [40] Hypersaline sapropels act as hotspots for microbial dark matter
    Andrei, Adrian-Stefan
    Baricz, Andreea
    Robeson, Michael Scott, II
    Pausan, Manuela Raluca
    Tamas, Tudor
    Chiriac, Cecilia
    Szekeres, Edina
    Barbu-Tudoran, Lucian
    Levei, Erika Andrea
    Coman, Cristian
    Podar, Mircea
    Banciu, Horia Leonard
    SCIENTIFIC REPORTS, 2017, 7