Sensitivity analysis of different devolatilisation models on predicting ignition point position during pulverized coal combustion in O2/N2 and O2/CO2 atmospheres

被引:39
|
作者
Jovanovic, Rastko [1 ]
Milewska, Aleksandra [1 ]
Swiatkowski, Bartosz [1 ]
Goanta, Adrian [2 ]
Spliethoff, Hartmut [2 ]
机构
[1] Inst Power Engn, Thermal Proc Dept, Warsaw, Poland
[2] Tech Univ Munich, Fak Maschinenwesen, D-85748 Garching, Germany
关键词
Pulverized coal; Devolatilisation; Oxy-fuel; CFD modelling; Oxy-combustion; BITUMINOUS COAL; OXY-FUEL; MECHANISMS; PARTICLES; PYROLYSIS; FLAMES; KINETICS; AIR;
D O I
10.1016/j.fuel.2011.02.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Oxy-fuel combustion is considered as a promising solution to reduce greenhouse-gases and pollutant emissions. The main advantage of oxy-fuel combustion over other technologies for pollution reduction from pulverized coal combustion is that it can be applied to the existing coal-fired power plants. However, switching from conventional to oxy-fired coal combustion brings significant challenges. One of the most important is change of pulverized coal ignition characteristics. This paper presents the results of experimental and numerical analysis of ignition phenomena under oxy-fuel conditions. The main focus of the presented paper is to evaluate the effectiveness of the mathematical devolatilisation sub-model, in predicting the ignition point of pulverized coal flames under oxy-firing conditions. Regarding this, the performance of several devolatilisation models, from simple to more complex ones, in predicting ignition point position have been investigated. Numerically determined values of the ignition point position, and ignition temperature for various O-2-N-2 and O-2-CO2 conditions were compared with experimental data from the laboratory ignition test facility. Obtained results pointed out that network devolatilisation models (CPD and FG) give more accurate results in comparison with standard devolatilisation models (single rate and two competing rates). The best performance is achieved using FG devolatilisation model. Thus, newly implemented FG model will be used for future numerical simulations of oxy-fuel pulverized coal combustion on 0.5 MW pilot plant facility. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 37
页数:15
相关论文
共 50 条
  • [41] Experimental Study on NO Emission Characteristics of Corn Stalk Combustion in O2/CO2 and O2/N2 Atmospheres
    Liu, Wenyong
    Gou, Xiang
    Liu, Liansheng
    Zhang, Kai
    Wu, Jinxiang
    Wang, Enyu
    PROGRESS IN MATERIALS AND PROCESSES, PTS 1-3, 2013, 602-604 : 1059 - 1063
  • [42] Study on the surface active reactivity of coal char conversion in O2/CO2 and O2/N2 atmospheres
    Liu, Yang
    Fu, Peifang
    Zhang, Bin
    Yue, Fang
    Zhou, Huaichun
    Zheng, Chuguang
    FUEL, 2016, 181 : 1244 - 1256
  • [43] Experimental and modeling study of single coal particle combustion in O2/N2 and Oxy-fuel (O2/CO2) atmospheres
    Maffei, Tiziano
    Khatami, Reza
    Pierucci, Sauro
    Faravelli, Tiziano
    Ranzi, Eliseo
    Levendis, Yiannis A.
    COMBUSTION AND FLAME, 2013, 160 (11) : 2559 - 2572
  • [44] Thermogravimetric characteristics of textile dyeing sludge, coal and their blend in N2/O2 and CO2/O2 atmospheres
    Zhuo, Zhongxu
    Liu, Jingyong
    Sun, Shuiyu
    Sun, Jian
    Kuo, Jiahong
    Chang, Kenlin
    Fu, Jiewen
    Wang, Yujie
    APPLIED THERMAL ENGINEERING, 2017, 111 : 87 - 94
  • [45] The characteristics and mechanism of NO formation during pyridine oxidation in O2/N2 and O2/CO2 atmospheres
    Luo, Jianghui
    Zou, Chun
    He, Yizhuo
    Jing, Huixiang
    Cheng, Sizhe
    ENERGY, 2019, 187
  • [46] Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres
    Diez, Luis I.
    Garcia-Mariaca, Alexander
    Canalis, Paula
    Llera, Eva
    ENERGY, 2023, 284
  • [47] CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
    Tu, Yaojie
    Xu, Mingchen
    Zhou, Dezhi
    Wang, Qingxiang
    Yang, Wenming
    Liu, Hao
    APPLIED ENERGY, 2019, 240 : 1003 - 1013
  • [48] Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres
    Li, Lin
    Duan, Lunbo
    Tong, Shuai
    Anthony, Edward John
    FUEL PROCESSING TECHNOLOGY, 2019, 186 : 8 - 17
  • [49] Comparison of the characteristics and mechanism of CO formation in O2/N2, O2/CO2 and O2/H2O atmospheres
    He, Yizhuo
    Zou, Chun
    Song, Yu
    Luo, Jianghui
    Jia, Huiqiao
    Chen, Wuzhong
    Zheng, Junmei
    Zheng, Chuguang
    ENERGY, 2017, 141 : 1429 - 1438
  • [50] Investigation of steam effect on ignition of dispersed coal particles in O2/N2 and O2/CO2 ambiences
    Xu, Yang
    Li, Shuiqing
    Yao, Qiang
    Yuan, Ye
    FUEL, 2018, 233 : 388 - 395