WO3-SnO2 nanosheet composites: Hydrothermal synthesis and gas sensing mechanism

被引:89
|
作者
Yin, Mingli [1 ,2 ]
Yao, Yao [1 ]
Fan, Haibo [1 ]
Liu, Shengzhong [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Natl Minist Educ, Inst Adv Energy Mat,Sch Mat Sci & Engn, Xian 710062, Shaanxi, Peoples R China
[2] Xian Technol Univ, Sch Sci, Xian 710032, Shaanxi, Peoples R China
[3] Chinese Acad Sci, Natl Lab Clean Energy, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
关键词
WO3; SnO2; Gas sensor; Sensing mechanism; Acetone; ROOM-TEMPERATURE; HETEROSTRUCTURE NANOFIBERS; FAST-RESPONSE; ZNO NANORODS; SENSOR; NANOPARTICLES; PERFORMANCE; NANOWIRES; MORPHOLOGIES; PARTICLES;
D O I
10.1016/j.jallcom.2017.11.185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
WO3-SnO2 nanosheet (NS) composites consisting of inner WO3 nanosheets surrounded by outer mixed phase SnO2 nanoparticles (NPs) were successfully synthesized by a simple two-step hydrothermal method. The density of SnO2 NPs on WO3 NSs can be controlled from sparse discrete state to complete shell structure by varying the amount of tin precursor. Apparent interface state density dependent gas sensing responses were observed for the WO3-SnO2 nanocomposites. The response of the WO3-SnO2 nanocomposites coated with complete SnO2 shell to 50 ppm acetone vapor is as high as 32.1, similar to 10 times higher than that of the pristine WO3 NS sensor, with a response time less than 2 s. The improvement in response and selectivity of the WO3-SnO2 nanocomposite sensors upon exposure to acetone molecules can be mainly attributed to the multifunctional interfaces between WO3 NSs and SnO2 NPs, exposed special facets of WO3 NSs, core-shell type nanostructures as well as the special physical and chemical properties of acetone molecules. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 50 条
  • [21] Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol
    Chiu, Hui-Chi
    Yeh, Chen-Sheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20): : 7256 - 7259
  • [22] Hydrothermal synthesis of SnO2 hierarchical nanostructures and their gas sensing properties
    Kuang, X.
    Liu, T.
    Li, T.
    Zeng, W.
    Peng, X.
    Zhang, H.
    MATERIALS TECHNOLOGY, 2016, 31 (05) : 260 - 265
  • [23] Hydrothermal synthesis of WO3H2O nanoplates and their gas-sensing performance
    Hu, Jie
    Xiong, Xueqing
    Guan, Wangwang
    Chen, Yong
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [24] Hydrothermal Synthesis and Ammonia Sensing Properties of WO3/Fe2O3 Nanorod Composites
    Nguyen Dac Dien
    Luong Huu Phuoc
    Vu Xuan Hien
    Dang Duc Vuong
    Nguyen Duc Chien
    Journal of Electronic Materials, 2017, 46 : 3309 - 3316
  • [25] Hydrothermal Synthesis and Ammonia Sensing Properties of WO3/Fe2O3 Nanorod Composites
    Nguyen Dac Dien
    Luong Huu Phuoc
    Vu Xuan Hien
    Dang Duc Vuong
    Nguyen Duc Chien
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (06) : 3309 - 3316
  • [26] Hydrothermal synthesis of WO3 nanorods: Structure, growth and gas sensing properties
    Chen, H.U.I. (18580872389@163.com), 2018, National Institute of Optoelectronics (12): : 11 - 12
  • [27] Synthesis of WO3 nanoflakes by hydrothermal route and its gas sensing application
    Kolhe, Pankaj S.
    Mutadak, Pallavi
    Maiti, Namita
    Sonawane, Kishor M.
    SENSORS AND ACTUATORS A-PHYSICAL, 2020, 304
  • [28] Hydrothermal synthesis of WO3 nanorods: structure, growth and gas sensing properties
    Cao, Shixiu
    Chen, Hui
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2018, 12 (11-12): : 749 - 753
  • [29] 3D Porous MXene Nanosheet/SnO2 Nanoparticle Composites for H2S Gas Sensing
    Tang, Lu
    Wang, Huajing
    Du, Zhenming
    Zhu, Chaoqi
    Ma, Chaofan
    Zeng, Dawen
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 5442 - 5453
  • [30] Hydrothermal synthesis and gas sensing properties of hexagonal and orthorhombic WO3 nanostructures
    Wei, Shaohong
    Zhao, Junhong
    Hu, Boxiao
    Wu, Kaiqiang
    Du, Weimin
    Zhou, Meihua
    CERAMICS INTERNATIONAL, 2017, 43 (02) : 2579 - 2585