Cobalt-modified molybdenum carbide as an efficient catalyst for chemoselective reduction of aromatic nitro compounds

被引:132
|
作者
Zhao, Zhongkui [1 ]
Yang, Hongling [1 ]
Li, Yu [1 ]
Guo, Xinwen [1 ]
机构
[1] Dalian Univ Technol, Sch Chem Engn, Dept Catalysis Chem & Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
SELECTIVE HYDROGENATION; TUNGSTEN CARBIDE; HIGHLY EFFICIENT; OXIDE CATALYSTS; SOLVENT-FREE; NITROARENES; HYDRAZINE; CARBON; NANOPARTICLES; NITROBENZENE;
D O I
10.1039/c3gc42049c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work presents a facile and clean transformation for synthesizing diverse functionalized arylamines through chemoselective reduction reaction of their corresponding substituted nitroarenes catalyzed by the supported cobalt-promoted molybdenum carbide catalyst on modified activated carbon (Co-Mo2C/AC, AC is denoted as the modified activated carbon by H2O2 oxidation treatment). Various characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP) and H-2 temperature-programmed reduction (H-2-TPR) were employed to reveal the relationship between catalyst nature and catalytic performance, and the plausible reaction mechanism is also proposed. The characterization results suggest that the addition of a small amount of transition metals, especially cobalt could significantly promote the formation of a perfect molybdenum carbide crystal phase, resulting in the improvement in catalytic properties of the supported molybdenum carbide catalyst. Reaction results demonstrate that the optimized Co-Mo2C/AC catalyst shows comparable catalytic performance towards precious metals for chemoselective reduction of various aromatic nitro compounds, affording 100% yield for all substrates involved in this work (99.3% of isolated yield for model substrate). Moreover, it can be found that the catalyst could be easily recovered by filtration and recycled without obvious loss in its catalytic properties. Therefore, the developed Co-Mo2C/AC catalyst in this work can be considered as an industrially viable and cheap candidate for clean and highly-efficient production of diverse functionalized arylamines.
引用
收藏
页码:1274 / 1281
页数:8
相关论文
共 50 条
  • [21] Chemoselective nitro reduction and hydroamination using a single iron catalyst
    Zhu, Kailong
    Shaver, Michael P.
    Thomas, Stephen P.
    CHEMICAL SCIENCE, 2016, 7 (05) : 3031 - 3035
  • [22] Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide/hydroxide catalyst. III. The selective reduction of nitro groups in aromatic azo compounds
    Lauwiner, M
    Roth, R
    Rys, P
    APPLIED CATALYSIS A-GENERAL, 1999, 177 (01) : 9 - 14
  • [23] Chemoselective reduction of carbonyl groups of aromatic nitro carbonyl compounds to the corresponding nitroalcohols using thiourea dioxide
    Sambher, Shikha
    Baskar, Chinnappan
    Dhillon, Ranjit S.
    ARKIVOC, 2009, : 141 - 145
  • [24] Cobalt-modified nickel–zinc catalyst for electrooxidation of methanol in alkaline medium
    Ece Altunbaş Şahin
    Gülfeza Kardaş
    Journal of Solid State Electrochemistry, 2013, 17 : 2871 - 2877
  • [25] Iron impregnated SBA-15, a mild and efficient catalyst for the catalytic hydride transfer reduction of aromatic nitro compounds
    Sanjini, N. S.
    Velmathi, S.
    RSC ADVANCES, 2014, 4 (30) : 15381 - 15388
  • [26] Ternary Composite of Biomass Porous Carbon/SnO2/Pt: An Efficient Catalyst for Reduction of Aromatic Nitro Compounds
    Shang, Huishan
    Du, Lulu
    Guan, Huijuan
    Zhang, Bing
    Xiang, Xu
    CHEMISTRYSELECT, 2018, 3 (18): : 5066 - 5072
  • [27] HYDROGENATION KINETICS OF BENZOIC-ACID ON A COBALT-MODIFIED PALLADIUM CATALYST
    ZHANABAEV, BZ
    RUSTAMBEKOVA, RA
    UTELBAEV, BT
    ZANOZINA, PP
    DAURENBEKOV, BD
    KINETICS AND CATALYSIS, 1990, 31 (04) : 755 - 760
  • [28] Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co-N/C catalyst
    Dai, Yuyu
    Li, Xiaoqing
    Wang, Likai
    Xu, Xiangsheng
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (48) : 22908 - 22914
  • [29] ALKALINE SULFIDE REDUCTION OF AROMATIC NITRO COMPOUNDS .13. PROCESSES IN ALKALINE SULFIDE REDUCTION OF AROMATIC NITRO COMPOUNDS
    HASHIMOT.S
    SUNAMOTO, J
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1968, 41 (02) : 499 - +
  • [30] Mg-Fe hydrotalcite as a catalyst for the reduction of aromatic nitro compounds with hydrazine hydrate
    Kumbhar, PS
    Sanchez-Valente, J
    Millet, JMM
    Figueras, F
    JOURNAL OF CATALYSIS, 2000, 191 (02) : 467 - 473