High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors

被引:18
|
作者
Ding, Yongqiang [1 ]
Li, Yali [1 ]
Li, Junshuai [1 ]
Yan, Xingbin [2 ]
机构
[1] Lanzhou Univ, Sch Phys Sci & Technol, Minist Educ, Key Lab Special Funct Mat & Struct Design, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, Lab Clean Energy Chem & Mat, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium ion hybrid capacitors; Anode; Nanotube-like carbon; Polyaniline nanotubes; Electrical energy storage; POLYANILINE NANOTUBES; RATE CAPABILITY; HARD CARBON; BATTERY; NANOSHEETS; STORAGE; NANOPARTICLES; NANOWIRES; COMPOSITE; MICROSPHERES;
D O I
10.1016/j.cclet.2019.11.017
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium ion hybrid capacitors are of great concern in large-scale and cost-effective electrical energy storage owing to their high energy and power densities, as well as natural abundance and wide distribution of sodium. However, it is difficult to find a well-pleasing anode material that matches the high-performance cathode materials to achieve good energy and power output for sodium ion hybrid capacitors. In this paper, nitrogen and sulfur co-doped nanotube-like carbon prepared by a simple carbonization process of high sulfur-loaded polyaniline nanotubes is introduced as the anode. The assembled sodium ion half cell based on the optimal nanotube-like carbon delivers a high reversible capacity of similar to 304.8 mAh/g at 0.2 A/g and an excellent rate performance of similar to 124.8 mAh/g at 10 A/g in a voltage window of 0.01-2.5 V (versus sodium/sodium ion). For the hybrid capacitors assembled using the optimal nanotube-like carbon as the anode and high-capacity activated carbon as the cathode, high energy densities of similar to 100.2 Wh/kg at 250 W/kg and similar to 50.69 Wh/kg at 12,500 W/kg are achieved. (C) 2019 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2219 / 2224
页数:6
相关论文
共 50 条
  • [41] Boron and phosphorous co-doped porous carbon as high-performance anode for sodium-ion battery
    Ahmad, Nazir
    Khan, Majid
    Zheng, Xiangjun
    Sun, Zhihui
    Yan, Jin
    Wei, Chaohui
    Shen, Liwei
    Batool, Nadia
    Yang, Ruizhi
    SOLID STATE IONICS, 2020, 356
  • [42] Zinc selenide/cobalt selenide in nitrogen-doped carbon frameworks as anode materials for high-performance sodium-ion hybrid capacitors
    Gao, Lin
    Cao, Minglei
    Zhang, Chuankun
    Li, Jian
    Zhu, Xiufang
    Guo, Xingkui
    Toktarbay, Zhexenbek
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
  • [43] Three-dimensional nitrogen-doped dual carbon network anode enabling high-performance sodium-ion hybrid capacitors
    Qiu, Daping
    Yue, Cheng
    Qiu, Chuang
    Xian, Liying
    Li, Min
    Wang, Feng
    Yang, Ru
    ELECTROCHIMICA ACTA, 2022, 405
  • [44] Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries
    Xia, Guoliang
    Wang, Changlai
    Jiang, Peng
    Lu, Jian
    Diao, Jiefeng
    Chen, Qianwang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) : 12317 - 12324
  • [45] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Dang, Fei
    Zhao, Wei
    Yang, Pengfei
    Wu, Huaping
    Liu, Yilun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (04) : 463 - 473
  • [46] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Fei Dang
    Wei Zhao
    Pengfei Yang
    Huaping Wu
    Yilun Liu
    Journal of Applied Electrochemistry, 2020, 50 : 463 - 473
  • [47] Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode
    Wan, Liu
    Wei, Wei
    Xie, Mingjiang
    Zhang, Yan
    Li, Xiang
    Xiao, Rui
    Che, Jian
    Du, Cheng
    ELECTROCHIMICA ACTA, 2019, 311 : 72 - 82
  • [48] Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries
    Yang, Chenglong
    Li, Weihan
    Yang, Zhenzhong
    Gu, Lin
    Yu, Yan
    NANO ENERGY, 2015, 18 : 12 - 19
  • [49] Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium-and sodium-ion batteries
    Lu, Mingjie
    Yu, Wenhua
    Shi, Jing
    Liu, Wei
    Chen, Shougang
    Wang, Xin
    Wang, Huanlei
    ELECTROCHIMICA ACTA, 2017, 251 : 396 - 406
  • [50] Nitrogen/sulfur co-doped disordered porous biocarbon as high performance anode materials of lithium/sodium ion batteries
    Wan, Hongri
    Hu, Xiaofang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) : 22250 - 22262