The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation

被引:22
|
作者
Zhang, Bohu [1 ]
Ji, Binxiang [1 ]
Liu, Weifeng [1 ]
机构
[1] Southwest Petr Univ, Sch Geosci & Technol, Chengdu 610500, Sichuan, Peoples R China
关键词
Hydraulic fracturing; Fracture propagation; Mechanics; Natural fracture; FINITE-ELEMENT-METHOD; NATURAL FRACTURES; RESERVOIRS; VOLUME;
D O I
10.1007/s40948-017-0077-z
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Disciplinarians of hydraulic fractures propagation direction can make engineering decisions and suggestions for shale gas reservoir reformation. Based on the strain energy density factor theory, the relationships of fracture surface water pressure, fracture dip, and confining pressure ratio on hydraulic fracture propagation angle are studied. The extended finite element method is used to analysis the influences of bedding plane, natural fracture and horizontal stress difference on fracture propagation characteristics. When water pressure is less than maximum horizontal principal stress (sigma(H)), there is a critical fracture surface inclination angle, and fractures propagation direction is reversed along the original fracture line. When the pressure is equal to sigma(H), fracture propagation angle increases with dip angle of the fracture surface, and is independent of the stress state. When water pressure is greater than sigma(H), fracture propagation angle increases first and then decreases. When the angle between bedding plane and sigma(H) is small, hydraulic fractures propagation direction extends along the sigma(H), conversely, along the bedding plane. The smaller horizontal stress difference is, the easier hydraulic fracture tends to be perpendicular to natural fracture, and the hydraulic fractures propagation direction easier to parallel to natural fracture in natural fracture.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [31] Numerical Simulation on Propagation Mechanism of Hydraulic Fracture in Fractured Rockmass
    Men Xiaoxi
    Tang Chun'an
    Han Zhihui
    MATERIALS SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2014, 488-489 : 417 - +
  • [32] Numerical simulation study on hydraulic fracture propagation in heavy oil reservoir with THM coupling
    Hu, Yongquan
    Wang, Qiang
    Zhao, Jinzhou
    Guo, Ziyi
    Zhang, Yong
    Mao, Chun
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2020, 24 (02) : 179 - 204
  • [33] Experimental and Numerical Simulation Study of Hydraulic Fracture Propagation during Coalbed Methane Development
    Ren, Qingshan
    Jiang, Yaodong
    Wang, Pengpeng
    Wu, Guangjie
    Danesh, Nima Noraei
    GEOFLUIDS, 2021, 2021
  • [34] Numerical Simulation of Fracture Initiation and Propagation in Oil Shale Horizontal Wells
    Haifeng Chen
    Chun Wei
    Xu Lou
    Hongrui Song
    Yi Pan
    Peng Yang
    Jian Guan
    Shuyao Wang
    Chemistry and Technology of Fuels and Oils, 2023, 59 : 534 - 550
  • [35] Numerical Simulation of Fracture Initiation and Propagation in Oil Shale Horizontal Wells
    Chen, Haifeng
    Wei, Chun
    Lou, Xu
    Song, Hongrui
    Pan, Yi
    Yang, Peng
    Guan, Jian
    Wang, Shuyao
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2023, 59 (03) : 534 - 550
  • [36] Numerical Simulation of Hydraulic Fracture Propagation in Conglomerate Reservoirs: A Case Study of Mahu Oilfield
    Pan, Yuting
    Ma, Xinfang
    Li, Jianmin
    Xie, Bobo
    Xiong, Dong
    PROCESSES, 2023, 11 (07)
  • [37] A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation
    Zhao, Zhiheng
    Li, Xiao
    Wang, Yu
    Zheng, Bo
    Zhang, Bo
    ENERGIES, 2016, 9 (07):
  • [38] Experimental study on hydraulic fracture propagation behavior in heterogeneous shale formations
    Bin, Wang
    Tao, Jia
    Binggui, Xu
    Kun, Ning
    Peng, Tan
    Yi, Zhou
    FRONTIERS IN ENERGY RESEARCH, 2024, 11
  • [39] Numerical simulation on hydraulic fracture propagation in laminated shale based on thermo-hydro-mechanical-damage coupling model
    Zhang, Bo
    Qu, Zhanqing
    Guo, Tiankui
    Chen, Ming
    Wang, Jiwei
    Zhang, Yuanhang
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2023, 32 (05) : 651 - 682
  • [40] An implicit criterion of fracture growth direction for 3D simulation of hydraulic fracture propagation
    Lapin, V. N.
    Cherny, S. G.
    ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 : 1171 - 1176