Supervised machine learning-based classification of oral malodor based on the microbiota in saliva samples

被引:17
|
作者
Nakano, Yoshio [1 ]
Takeshita, Toru [2 ]
Kamio, Noriaki [2 ]
Shiota, Susumu [2 ]
Shibata, Yukie [2 ]
Suzuki, Nao [3 ]
Yoneda, Masahiro [4 ]
Hirofuji, Takao [3 ]
Yamashita, Yoshihisa [2 ]
机构
[1] Nihon Univ, Sch Dent, Dept Chem, Chuo Ku, Tokyo 1018310, Japan
[2] Kyushu Univ, Fac Dent Sci, Div Oral Hlth Growth & Dev, Sect Prevent & Publ Hlth Dent,Higashi Ku, Fukuoka 8128582, Japan
[3] Fukuoka Dent Coll, Dept Gen Dent, Sect Gen Dent, Sawara Ku, Fukuoka 8140193, Japan
[4] Fukuoka Dent Coll, Ctr Oral Dis, Hakata Ku, Fukuoka 8120011, Japan
关键词
Support vector machines; Neural networks; Oral malodor classification; METHYL MERCAPTAN; DIVERSITY;
D O I
10.1016/j.artmed.2013.12.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: This study presents an effective method of classifying oral malodor from oral microbiota in saliva by using a support vector machine (SVM), an artificial neural network (ANN), and a decision tree. This approach uses concentrations of methyl mercaptan in mouth air as an indicator of oral malodor, and peak areas of terminal restriction fragment (T-RF) length polyrnorphisms (T-RFLPs) of the 16S rRNA gene as data for supervised machine-learning methods, without identifying specific species producing oral malodorous compounds. Methods: 1 6S rRNA genes were amplified from saliva samples from 309 subjects, and T-RFLP analysis was carried out with the DNA fragments. T-RFLP analysis provides information on microbiota consisting of fragment lengths and peak areas corresponding to bacterial strains. The peak area is equivalent to the frequency of a specific fragment when one molecule is selected from terminal fragments. Another frequency is obtained by dividing the number of species-containing samples by the total number of samples. An SVM, an ANN, and a decision tree were trained based on these two frequencies in 308 samples and classified the presence or absence of methyl mercaptan in mouth air from the remaining subject. Results: The proportion that trained SVM expressed as entropy achieved the highest classification accuracy, with a sensitivity of 51.1% and specificity of 95.0%. The ANN and decision tree provided lower classification accuracies, and only classification by the ANN was improved by weighting with entropy from the frequency of appearance in samples, which increased the accuracy to 81.9% with a sensitivity of 60.2% and a specificity of 90.5%. The decision tree showed low classification accuracy under all conditions. Conclusions: Using T-RF proportions and frequencies, models to classify the presence of methyl mercaptan, a volatile sulfur-containing compound that causes oral malodor, were developed. SVM classifiers successfully classified the presence of methyl mercaptan with high specificity, and this classification is expected to be useful for screening saliva for oral malodor before visits to specialist clinics. Classification by a SVM and an ANN does not require the identification of the oral microbiota species responsible for the malodor, and the ANN also does not require the proportions of T-RFs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 101
页数:5
相关论文
共 50 条
  • [21] Supervised Machine Learning-based Routing for Named Data Networking
    Mekinda, Leonce
    Muscariello, Luca
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [22] A supervised contrastive learning-based model for image emotion classification
    Sun, Jianshan
    Zhang, Qing
    Yuan, Kun
    Jiang, Yuanchun
    Chen, Xinran
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2024, 27 (03):
  • [23] Machine learning-based ransomware classification of Bitcoin transactions
    Dib, Omar
    Nan, Zhenghan
    Liu, Jinkua
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [24] A machine learning-based underwater noise classification method
    Song, Guoli
    Guo, Xinyi
    Wang, Wenbo
    Ren, Qunyan
    Li, Jun
    Ma, Li
    APPLIED ACOUSTICS, 2021, 184
  • [25] Machine Learning-Based Classification Models for Diagnosis of Diabetes
    Jaiswal S.
    Jaiswal T.
    Recent Advances in Computer Science and Communications, 2022, 15 (06) : 813 - 821
  • [26] Machine Learning-Based Classification of Vector Vortex Beams
    Giordani, Taira
    Suprano, Alessia
    Polino, Emanuele
    Acanfora, Francesca
    Innocenti, Luca
    Ferraro, Alessandro
    Paternostro, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [27] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [28] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [29] Machine Learning-Based Water Quality Classification Assessment
    Chen, Wenliang
    Xu, Duo
    Pan, Bowen
    Zhao, Yuan
    Song, Yan
    WATER, 2024, 16 (20)
  • [30] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400