A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology

被引:0
|
作者
Luque, S
Mallubhotla, H
Gehlert, G
Kuriyel, R
Dzengeleski, S
Pearl, S
Belfort, G [1 ]
机构
[1] Rensselaer Polytech Inst, Howard P Isermann Dept Chem Engn, Troy, NY 12180 USA
[2] Millipore Corp, Bioproc Div, Bedford, MA 01730 USA
[3] Univ Oviedo, Dept Chem & Environm Technol, E-33071 Oviedo, Spain
[4] Tech Univ Hamburg Harburg, Dept Chem Engn, Hamburg, Germany
关键词
microfiltration; Dean vortices; helical hollow-fiber module; yeast suspension; E. coli lysate; mammalian cell culture; biotechnology;
D O I
10.1002/(SICI)1097-0290(19991105)65:3<247::AID-BIT1>3.3.CO;2-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The microfiltration performance of a novel membrane module design with helically wound hollow fibers is compared with that obtained with a standard commercial-type crossflow module containing linear hollow fibers. Cell suspensions (yeast, E. coli, and mammalian cell cultures) commonly clarified in the biotechnology industry are used for this comparison. The effect of variables such as transmembrane pressure, particle suspension concentration, and feed flow rate on membrane performance is evaluated. Normalized permeation fluxes versus flow rate or Dean number behave according to a heat transfer correlation obtained with centrifugal instabilities of the Taylor type. The microfiltration performance of this new module design, which uses secondary flows in helical tubes, is significantly better than an equivalent current commercial crossflow module when filtering suspensions relevant to the biotechnology industry. Flux and capacity improvements of up to 3.2-fold (constant transmembrane pressure operation) and 3.9-fold (constant flux operation), respectively, were obtained with the helical module over those for the linear module. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [41] A NEW-TYPE OF HOLLOW-FIBER PERTRACTOR
    SCHLOSSER, S
    ROTHOVA, I
    SEPARATION SCIENCE AND TECHNOLOGY, 1994, 29 (06) : 765 - 780
  • [42] Particle fouling in submerged microfiltration membranes: effects of hollow-fiber length and aeration rate
    Kim, Jeonghwan
    DiGiano, Francis A.
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2006, 55 (7-8): : 535 - 547
  • [43] Perturbation solution of hollow-fiber membrane module for pure gas permeation
    Chang, D
    Min, J
    Oh, S
    Moon, K
    JOURNAL OF MEMBRANE SCIENCE, 1998, 143 (1-2) : 53 - 64
  • [44] THE USE OF A HOLLOW-FIBER MEMBRANE MODULE IN SAMPLE CONDITIONING PRIOR TO ELECTROPHORESIS
    SCHWARZ, T
    SINDERN, S
    BARTHOLMES, P
    KAUFMANN, M
    ELECTROPHORESIS, 1994, 15 (8-9) : 1118 - 1119
  • [45] PRODUCTION OF VITAMIN-B12 BY A FERMENTER WITH A HOLLOW-FIBER MODULE
    HATANAKA, H
    WANG, E
    TANIGUCHI, M
    IIJIMA, S
    KOBAYASHI, T
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1988, 27 (5-6) : 470 - 473
  • [46] REMOVAL OF ENDOTOXIN FROM WATER BY MICROFILTRATION THROUGH A MICROPOROUS POLYETHYLENE HOLLOW-FIBER MEMBRANE
    SAWADA, Y
    FUJII, R
    IGAMI, I
    KAWAI, A
    KAMIKI, T
    NIWA, M
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 51 (04) : 813 - 820
  • [47] Computer-aided design of hollow-fiber dialyzers
    Suzuki Y.
    Kohori F.
    Sakai K.
    Journal of Artificial Organs, 2001, 4 (4) : 326 - 330
  • [48] Dynamic microfiltration with a vibrating hollow fiber membrane module: Filtration of yeast suspensions
    Beier, Soren Prip
    Guerra, Maria
    Garde, Arvid
    Jonsson, Gunnar
    JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) : 281 - 287
  • [49] Fabrication study of polysulfone hollow-fiber microfiltration membranes: Optimal dope viscosity for nucleation and growth
    Ohya, H.
    Shiki, S.
    Kawakami, H.
    JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (02) : 293 - 302
  • [50] Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor
    Lee, Kuo-Shing
    Lin, Ping-Jei
    Kai, Fangchiang
    Chang, Jo-Shu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (08) : 950 - 957