Scattering hypervolume of fermions in two dimensions

被引:2
|
作者
Wang, Zipeng [1 ]
Tan, Shina [1 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
基金
国家重点研发计划;
关键词
D O I
10.1103/PhysRevA.106.023310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We define the three-body scattering hypervolume D-F for identical spin-polarized fermions in two dimensions by considering the wave function of three such fermions colliding at zero energy and zero orbital angular momentum. We derive the asymptotic expansions of such a wave function when three fermions are far apart or one pair and the third fermion are far apart, and D-F appears in the coefficients of such expansions. For weak-interaction potentials, we derive an approximate formula of D-F by using the Born expansion. We then study the shift of energy of three such fermions in a large periodic area due to D-F. This shift is proportional to D-F times the square of the area of the triangle formed by the momenta of the fermions. We also calculate the shifts of energy and of pressure of spin-polarized two-dimensional Fermi gases due to a nonzero D-F and the three-body recombination rate of spin-polarized ultracold atomic Fermi gases in two dimensions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Scattering hypervolume of spin-polarized fermions
    Wang, Zipeng
    Tan, Shina
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [2] Fermions in Two Dimensions: Scattering and Many-Body Properties
    Galea, Alexander
    Zielinski, Tash
    Gandolfi, Stefano
    Gezerlis, Alexandros
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2017, 189 (5-6) : 451 - 469
  • [3] Fermions in Two Dimensions: Scattering and Many-Body Properties
    Alexander Galea
    Tash Zielinski
    Stefano Gandolfi
    Alexandros Gezerlis
    Journal of Low Temperature Physics, 2017, 189 : 451 - 469
  • [4] Three-body scattering hypervolume of identical fermions in one dimension
    Wang Z.
    Tan S.
    Physical Review A, 2023, 108 (03)
  • [5] Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms
    Kuhn, Tobias
    Fonseca, Carlos M.
    Paquete, Luis
    Ruzika, Stefan
    Duarte, Miguel M.
    Figueira, Jose Rui
    EVOLUTIONARY COMPUTATION, 2016, 24 (03) : 411 - 425
  • [6] Eightfold Degenerate Fermions in Two Dimensions
    Guo, Peng-Jie
    Wei, Yi-Wen
    Liu, Kai
    Liu, Zheng-Xin
    Lu, Zhong-Yi
    PHYSICAL REVIEW LETTERS, 2021, 127 (17)
  • [7] Fermions between one and two dimensions
    Rice, TM
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1999, 335 : 1355 - 1375
  • [8] Optimized confinement of fermions in two dimensions
    Cone, J. D.
    Chiesa, S.
    Rousseau, V. R.
    Batrouni, G. G.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2012, 85 (07):
  • [9] Translational anomaly of chiral fermions in two dimensions
    Beltran-Palau, Pau
    Navarro-Salas, Jose
    Pla, Silvia
    PHYSICAL REVIEW D, 2019, 99 (10)
  • [10] Dynamics of Majorana fermions in two-dimensions
    Sanchez-Monroy, J. A.
    Bustos, Abel
    ANNALS OF PHYSICS, 2018, 397 : 234 - 242