Reconstruction of stationary and non-stationary signals by the generalized Prony method

被引:7
|
作者
Plonka, Gerlind [1 ]
Stampfer, Kilian [2 ]
Keller, Ingeborg [1 ]
机构
[1] Gottingen Univ, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
[2] Gottingen Univ, Inst Math Stochast, Goldschmidtstr 7, D-37077 Gottingen, Germany
关键词
Generalized Prony method; exponential sums; trigonometric sums; modulated Gaussian windows; Gaussian chirps; non-stationary signals; signal reconstruction; empirical mode decomposition; FINITE RATE; DECOMPOSITION; INTERPOLATION; INNOVATION;
D O I
10.1142/S0219530518500240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ the generalized Prony method in [T. Peter and G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems 29 (2013) 025001] to derive new reconstruction scheme for a variety of sparse signal models using only a small number of signal measurements. By introducing generalized shift operators, we study the recovery of sparse trigonometric and hyperbolic functions as well as sparse expansions into Gaussians chirps and modulated Gaussian windows. Furthermore, we show how to reconstruct sparse polynomial expansions and sparse non-stationary signals with structured phase functions.
引用
收藏
页码:179 / 210
页数:32
相关论文
共 50 条
  • [31] Analysis of multicomponent non-stationary signals by continuous wavelet transform method
    Prasad, K
    Sircar, P
    2005 IEEE International Workshop on Intelligent Signal Processing (WISP), 2005, : 223 - 228
  • [32] A method for estimating the instantaneous frequency of non-stationary heart sound signals
    Sun, LS
    Shen, MF
    Chan, FHY
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS & SIGNAL PROCESSING, PROCEEDINGS, VOLS 1 AND 2, 2003, : 798 - 801
  • [33] An Ensemble Method for Incremental Classification in Stationary and Non-stationary Environments
    Nanculef, Ricardo
    Lopez, Erick
    Allende, Hector
    Allende-Cid, Hector
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 541 - 548
  • [34] Non-stationary analysis and noise filtering using a technique extended from the original prony method
    Ribeiro, MP
    Ewins, DJ
    Robb, DA
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2003, 17 (03) : 533 - 549
  • [35] Stationary and Non-Stationary Noise Removal from Cardiac Signals using CSLMS
    Rao, Y. Raghavender
    DevadasNaik, N.
    2017 IEEE INTERNATIONAL CONFERENCE ON POWER, CONTROL, SIGNALS AND INSTRUMENTATION ENGINEERING (ICPCSI), 2017, : 1208 - 1212
  • [36] Drying in stationary and non-stationary conditions
    Kowalski, Stefan Jan
    Pawlowski, Andrzej
    CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2008, 29 (02): : 337 - 344
  • [37] Drying in stationary and non-stationary conditions
    Poznan University of Technology, Institute of Technology and Chemical Engineering, pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan, Poland
    Chem. Process Eng., 2008, 2 (337-344):
  • [38] STATIONARY AND NON-STATIONARY WIND PROFILE
    ESSENWAN.O
    BILLIONS, NS
    PURE AND APPLIED GEOPHYSICS, 1965, 60 (01) : 160 - &
  • [39] STATIONARY OPERATOR FOR NON-STATIONARY PROCESSES
    ZUBAREV, DN
    DOKLADY AKADEMII NAUK SSSR, 1965, 164 (03): : 537 - &
  • [40] The problem of the stationary and non-stationary tail
    Volberg, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 24 : 657 - 661