Parameters Identification of the Induction Machine Using a Non Linear Parametric Technique

被引:2
|
作者
Menacer, Arezki [1 ]
Moreau, Sandrine [2 ]
Champenois, Gerard [2 ]
机构
[1] Univ Biskra, LGEB Lab Genie Elect, Biskra, Algeria
[2] Univ Poitiers ENSMA, LIAS, Poitiers, France
关键词
Induction Machine; Parameter Identification; Output Error Method; Levenberg Marquardt;
D O I
10.1080/09398368.2012.11463836
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to determine the electrical parameters of induction machine experimentally by using a non linear parametric identification technique. This technique is based on the output error method and the Levenberg Marquardt algorithm, which guaranties the stability of the algorithm far from the optimum and a good convergence speed near the optimum. To assure the identification algorithm convergence, a specific excitation is added on the voltages which feed the induction machine instead of the SBPA noise signal. This excitation should not disturb the normal running of the motor and must be sufficient to assure a good convergence of the identification algorithm.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条
  • [1] Recursive parameter identification of an induction machine using a non linear programming method
    Coirault, P
    Trigeassou, JC
    Kerignard, D
    Gaubert, JP
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1996, : 644 - 649
  • [2] Parametric identification of the doubly fed induction machine
    Hasni, Mourad
    Mancer, Zohir
    Mekhtoub, Said
    Bacha, Seddik
    TERRAGREEN 2012: CLEAN ENERGY SOLUTIONS FOR SUSTAINABLE ENVIRONMENT (CESSE), 2012, 18 : 177 - 186
  • [3] Unscented Kalman filter for non-linear estimation of induction machine parameters
    Lalami, A.
    Wamkeue, R.
    Kamwa, I.
    Saad, M.
    Beaudoin, J. J.
    IET ELECTRIC POWER APPLICATIONS, 2012, 6 (09) : 611 - 620
  • [4] Parameters Identification of an Axial Flux Induction Machine using Field Equations
    Tapia, M. A.
    Jara, W.
    Wallace, R.
    Tapia, J. A.
    2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2018, : 351 - 357
  • [5] Identification of Induction Machine Electrical Parameters using Genetic Algorithms Optimization
    Kampisios, Konstantinos
    Zanchetta, Pericle
    Gerada, Chris
    Trentin, Andrew
    2008 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, VOLS 1-5, 2008, : 1834 - 1840
  • [6] Identification of induction machine parameters using a new adaptive genetic algorithm
    Abdelhadi, B
    Benoudjit, A
    Said, NN
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2004, 32 (08) : 767 - 784
  • [7] Parametric identification of non-linear systems
    Padhy, PK
    Majhi, S
    Proceedings of the IEEE INDICON 2004, 2004, : 220 - 224
  • [8] Induction machine parametric identification by the ants Pachcondyla apicalis algorithm
    SET, Département d'Electronique, Université de Blida, Blida, Algeria
    Mediterr. J. Meas. Control, 2007, 2 (49-58):
  • [9] Parametric Identification of Induction Machine Classic and Fractional park model
    Hammami, Rahma
    Khadhraoui, Abir
    Jelassi, Khaled
    Ben Ameur, Imene
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [10] Induction machine parameters identification using modified H-G diagram
    Nait-Said, N. (n_naitsaid@yahoo.com), Emirates Telecommunications Corporation (ETISALAT); et al.; Etisalat College of Engineering (ECE); IEEE Circuits and Systems Society (CAS); The Institute of Electrical and Electronics Engineers (IEEE); University of Sharjah (UOS) (Institute of Electrical and Electronics Engineers Inc.):