Click Reaction-Assisted Peptide Immune Checkpoint Blockade for Solid Tumor Treatment

被引:31
|
作者
Xiao, Wu-Yi [1 ]
Wang, Yi [2 ]
An, Hong-Wei [2 ]
Hou, Dayong [3 ]
Mamuti, Muhetaerjiang [2 ]
Wang, Man-Di [2 ]
Wang, Jie [2 ]
Xu, Wanhai [3 ]
Hu, Liming [1 ]
Wang, Hao [2 ]
机构
[1] Beijing Univ Technol, Coll Life Sci & Bioengn, Beijing 100124, Peoples R China
[2] Natl Ctr Nanosci & Technol NCNST, CAS Ctr Excellence Nanosci, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
[3] Harbin Med Univ, Dept Urol, Heilongjiang Key Lab Sci Res Urol, Hosp 4, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
click reaction; immune checkpoint blockade; PD-L1; self-assembly; peptide; TISSUE; PENETRATION; INHIBITORS; ANTIBODY;
D O I
10.1021/acsami.0c10166
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
One of the major challenges of immune checkpoint blockade (ICB) is the poor penetration of antibody for solid tumor treatment. Herein, peptides with deeper penetration capability are used to develop a click reaction-assisted peptide immune checkpoint blockade (CRICB) strategy that could in situ construct assemblies, enabling enhanced accumulation and prolonged PD-L1 occupancy, ultimately realizing high-performance tumor inhibition. First, the free DBCO-modified targeting peptide (TP) efficiently recognizes and binds PD-L1 in a deep solid tumor. Upon a reagent-free click reaction with a subsequently introduced azide-tethered assembled peptide (AP), the click reaction results in spontaneous self-aggregation in situ with enhanced accumulation and prolonged occupancy. In addition, the penetration of TP-AP (121.2 +/- 15.5 mu m) is significantly enhanced compared with that of an antibody (19.9 +/- 5.6 mu m) in a solid tumor tissue. More importantly, significant immunotherapy effects and negligible side effects are observed in 4T1 and CT26 tumor-bearing mice models treated with TP-AP, suggesting the high-performance tumor inhibition attributed to the CRICB strategy. In summary, this CRICB strategy manifest the preferable effects of immune checkpoint blockade, thereby extending the biomedical application of assembling peptides.
引用
收藏
页码:40042 / 40051
页数:10
相关论文
共 50 条
  • [41] Durable Disease Control with Local Treatment for Oligoprogression of Metastatic Solid Tumors Treated with Immune Checkpoint Blockade
    Sindhu, K.
    Leiter, A.
    Carroll, E.
    Brooks, D.
    Ben Shimol, J.
    Eisenberg, E.
    Gallagher, E. J.
    Stock, R. G.
    Galsky, M.
    Buckstein, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E650 - E650
  • [42] The obesity paradox in immune checkpoint blockade: A pan-tumor analysis
    Alden, Stephanie Leigh
    Charmsaz, Soren
    Brancati, Madelena
    Li, Howard L.
    Warner, Aanika
    Munjal, Kabeer
    Howe, Kathryn
    Mitchell, Sarah
    Griffin, Ervin
    Nakazawa, Mari
    Tsai, Hua-Ling
    Danilova, Ludmila
    Thoburn, Chris
    Gizzi, Jennifer
    Hernandez, Alexei
    Gross, Nicole E.
    Coyne, Erin M.
    Shin, Sarah M.
    Durham, Jennifer
    Konig, Maximilian F.
    Christmas, Brian J.
    Lipson, Evan J.
    Naidoo, Jarushka
    Cappelli, Laura C.
    Pabani, Aliyah
    Ged, Yasser
    Baretti, Marina
    Brahmer, Julie R.
    Hoffman-Censits, Jean
    Seiwert, Tanguy Y.
    Bansal, Sanjay
    Tang, Laura
    Jaffee, Elizabeth
    Chandler, G. Scott
    Mohindra, Rajat
    Ho, Won Jin
    Yarchoan, Mark
    Kao, Chester
    CANCER RESEARCH, 2024, 84 (06)
  • [43] Tumor lysis syndrome and collateral immune activation in dual checkpoint blockade
    Konishi, Risa
    Ishitsuka, Yosuke
    Imai, Hidemi
    Inoue, Sae
    Nakamura, Yoshiyuki
    Okiyama, Naoko
    Oshika, Tetsuro
    Hiraoka, Takahiro
    Fujisawa, Yasuhiro
    JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY, 2021, 4 (02) : 39 - 40
  • [44] The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy
    Russell, Bonnie L.
    Sooklal, Selisha A.
    Malindisa, Sibusiso T.
    Daka, Lembelani Jonathan
    Ntwasa, Monde
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [45] Impact of comorbidity on immune checkpoint blockade tolerance across tumor types
    Clark-Garvey, Sean
    Holden, Thomas
    Altman, Daniel S.
    Patel, Sheel A.
    Li, Sharon
    Mukherji, Reetu
    Margiotta, Philip
    Caldararo, Mario
    Orloff, Marlana M.
    Johnson, Jennifer Maria
    Weight, Ryan Michael
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [46] Bilateral murine tumor models for characterizing the response to immune checkpoint blockade
    Zemek, Rachael M.
    Fear, Vanessa S.
    Forbes, Cath
    de Jong, Emma
    Casey, Thomas H.
    Boon, Louis
    Lassmann, Timo
    Bosco, Anthony
    Millward, Michael J.
    Nowak, Anna K.
    Lake, Richard A.
    Lesterhuis, W. Joost
    NATURE PROTOCOLS, 2020, 15 (05) : 1628 - 1648
  • [47] Bilateral murine tumor models for characterizing the response to immune checkpoint blockade
    Rachael M. Zemek
    Vanessa S. Fear
    Cath Forbes
    Emma de Jong
    Thomas H. Casey
    Louis Boon
    Timo Lassmann
    Anthony Bosco
    Michael J. Millward
    Anna K. Nowak
    Richard A. Lake
    W. Joost Lesterhuis
    Nature Protocols, 2020, 15 : 1628 - 1648
  • [48] Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade
    Fortin, Bridget M.
    Pfeiffer, Shannon M.
    Insua-Rodriguez, Jacob
    Alshetaiwi, Hamad
    Moshensky, Alexander
    Song, Wei A.
    Mahieu, Alisa L.
    Chun, Sung Kook
    Lewis, Amber N.
    Hsu, Alex
    Adam, Isam
    Eng, Oliver S.
    Pannunzio, Nicholas R.
    Seldin, Marcus M.
    Marazzi, Ivan
    Marangoni, Francesco
    Lawson, Devon A.
    Kessenbrock, Kai
    Masri, Selma
    NATURE IMMUNOLOGY, 2024, 25 (07) : 1257 - 1269
  • [49] Immune checkpoint blockade enhances chemophototherapy in a syngeneic pancreatic tumor model
    Ghosh, Sanjana
    He, Xuedan
    Huang, Wei-Chiao
    Lovell, Jonathan F. F.
    APL BIOENGINEERING, 2022, 6 (03)
  • [50] Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance
    Li, Yaqi
    Liu, Jing
    Gao, Long
    Liu, Yuan
    Meng, Fang
    Li, Xiaoan
    Qin, F. Xiao-Feng
    IMMUNOLOGY LETTERS, 2020, 220 : 88 - 96