In our previous studies (Chu et al. in Heat Mass Transf 43(11):1213-1224, 2007), a theoretical model of swirl atomizers was successfully established. From the analysis, the equations for the droplet size, velocity components, the boundary layer thickness and the spray cone angle were deduced based on the fundamental governing equations. The purpose of this study is to further compare the experimental result with the theoretical one already gained by a satisfactory embodiment of series of experiments. The aim is to corroborate the analytical results of the influence of atomizer construction and controlled pressure difference on typical swirl chambers. The results provide the droplet diameter as a function of pressure difference, swirl atomizer geometry, flow rate, spray cone angle. The experimental outputs also show a good confirmation of theoretical results and can also be used for further optimization on existing swirl chambers. Based on the results obtained, an optimization methodology on characteristics of swirl atomizers is proposed with the adjustment of individual design parameter and the matching flow number.