Probabilistic fatigue life prediction model of natural rubber components based on the expanded sample data

被引:13
|
作者
Liu, Xiangnan [1 ]
Shangguan, Wen-Bin [1 ]
Zhao, Xuezhi [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Small samples; Rubber fatigue; Support vector machine; Reliability assessment; RELIABILITY EVALUATION; VARIABLE AMPLITUDE;
D O I
10.1016/j.ijfatigue.2022.107034
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A novel method for determine the probabilistic distribution model of natural rubber (NR) fatigue life is proposed. Uniaxial tension fatigue tests are carried out on dumbbell-shaped cylindrical specimens. According to the fatigue test data, a support vector machine (SVM) model is established, in which the empirical reliability and the rubber fatigue life are considered as input and output variables, respectively. The SVM model is used to expand the NR fatigue life data. The analysis of the expanded data demonstrates that the NR fatigue life follows a lognormal distribution. Accordingly, the fatigue reliability evaluation of NR components is carried out.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Field damage data analysis and probabilistic fatigue life assessment of turbine components
    Fujiyama, K
    Takaki, K
    Nakatani, Y
    Yoshioka, Y
    Itoh, Y
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 2002, 8 (03): : 134 - 139
  • [42] A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials
    Tobajas, Rafael
    Elduque, Daniel
    Ibarz, Elena
    Javierre, Carlos
    Gracia, Luis
    POLYMERS, 2020, 12 (05)
  • [43] Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model
    Kim, JungHoon
    Zi, Goangseup
    Son-Nguyen Van
    Jeong, MinChul
    Kong, JungSik
    Kim, Minsung
    STRUCTURAL ENGINEERING AND MECHANICS, 2011, 38 (04) : 443 - 457
  • [44] Probabilistic model of the multiaxial low-cycle fatigue life prediction
    Wang, Lei
    Sui, Tianzhong
    Zhao, Hang
    Men, Enguo
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 2135 - 2140
  • [45] Probabilistic fatigue life prediction employing an advanced crack propagation model
    Lee, Y. -J
    Lee, J. H.
    Lee, S.
    MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 598 - 604
  • [46] Probabilistic fatigue life prediction of notched components using strain energy density approach
    Li, Xue-Kang
    Chen, Sijia
    Zhu, Shun-Peng
    Liao, Ding
    Gao, Jie-Wei
    ENGINEERING FAILURE ANALYSIS, 2021, 124 (124)
  • [47] A Review on Development and Application of Probabilistic Fatigue Life Prediction Models for Metal Materials and Components
    Zhang M.
    Yuan S.
    Zhong M.
    Bai J.
    2018, Cailiao Daobaoshe/ Materials Review (32): : 808 - 814
  • [48] Development of a probabilistic model for the prediction of fatigue life in the very high cycle fatigue (VHCF) range based on inclusion population
    Kolyshkin, Anton
    Grigorescu, Andrei
    Kaufmann, Edgar
    Zimmermann, Martina
    Christ, Hans-Juergen
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 1085 - 1092
  • [49] Development of a probabilistic model for the prediction of fatigue life in the very high cycle fatigue (VHCF) range based on inclusion population
    Kolyshkin, A.
    Grigorescu, A.
    Kaufmann, E.
    Zimmermann, M.
    Christ, H. -J.
    FDMD II - JIP 2014 - FATIGUE DESIGN & MATERIAL DEFECTS, 2014, 12
  • [50] Development of a Probabilistic Model for the Prediction of Fatigue Life in the Very High Cycle Fatigue (VHCF) Range Based on Inclusion Population
    Kolyshkin, A.
    Grigorescu, A.
    Kaufmann, E.
    Zimmermann, M.
    Christ, H. -J.
    11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014, 891-892 : 1093 - +