A Least Squares Solution for Camera Distortion Parameters

被引:8
|
作者
Hanning, Tobias [1 ]
机构
[1] Univ Passau, D-94032 Passau, Germany
关键词
Camera calibration; Distortion model; Closed-form solution; Non-linear optimization; CALIBRATION; ACCURACY; MODEL;
D O I
10.1007/s10851-012-0350-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most applications in optical metrology need a well calibrated camera. In particular, a calibrated camera includes a distortion mapping, parameters of which are determined in a final non-linear optimization over all camera parameters. In this article we present a closed form solution for the distortion parameters provided that all other camera parameters are known. We show that for radial, tangential, and thin prism distortions the determination of the parameters form a linear least squares problem. Therefore, a part of the camera calibration error function can be minimized by linear methods in closed form: We are able to decouple the calculation of the distortion parameters from the non-linear optimization. The number of parameters in the non-linear minimization are reduced. Several experimental results confirm the benefit of the approach.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [21] Least squares fitting of coordinate parameters model
    YU Sheng-wen~(1)
    2. Bao’an Coal Mine of Huaning Group
    3. The Plan Bureau of Laiwu
    Transactions of Nonferrous Metals Society of China, 2005, (S1) : 197 - 199
  • [22] Least squares estimation of parameters in implicit models
    Lisy, JM
    Simon, P
    Bafrncová, S
    Graczová, E
    COMPUTERS & CHEMISTRY, 1999, 23 (06): : 587 - 595
  • [23] Least squares fitting of coordinate parameters model
    Yu, SW
    Dong, J
    Wang, AM
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2005, 15 : 189 - 191
  • [24] ESTIMATION OF PARAMETERS FOR NONLINEAR LEAST SQUARES ANALYSIS
    KITTRELL, JR
    MEZAKI, R
    WATSON, CC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1965, 57 (12): : 19 - &
  • [25] LEAST-SQUARES ESTIMATES OF BOD PARAMETERS
    BARNWELL, TO
    JOURNAL OF THE ENVIRONMENTAL ENGINEERING DIVISION-ASCE, 1980, 106 (06): : 1197 - 1202
  • [26] A LEAST SQUARES SOLUTION FOR ESTIMATION OF A PLANAR NOMOGRAPHY
    Majji, Manoranjan
    Diz, Martin
    Truong, David
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 2333 - 2340
  • [27] Unweighted least squares estimation of weibull parameters
    Hossain, A
    Howlader, HA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 54 (1-3) : 265 - 271
  • [28] Least squares estimation of Heidler function parameters
    Vujevic, Slavko
    Lovric, Dino
    Juric-Grgic, Ivica
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 329 - 344
  • [29] LEAST-SQUARES COLLOCATION WITH INTEGER PARAMETERS
    Teunissen, P. J. G.
    ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2006, 41 (02): : 59 - 66
  • [30] Least squares estimation for identification of parameters with constraints
    An, K.
    Ma, J.G.
    Fu, C.Y.
    Guangdian Gongcheng/Opto-Electronic Engineering, 2001, 28 (02): : 43 - 46