Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation

被引:33
|
作者
Burnsed, Olivia A. [1 ,2 ]
Schwartz, Zvi [3 ,4 ]
Marchand, Katherine O. [5 ]
Hyzy, Sharon L. [3 ]
Olivares-Navarrete, Rene [3 ]
Boyan, Barbara D. [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[3] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA USA
[4] Univ Texas Hlth Sci Ctr San Antonio, Dept Periodont, San Antonio, TX 78229 USA
[5] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Cartilage; ECM (extracellular matrix); Mesenchymal stem cell; Cartilage tissue engineering; ENDOTHELIAL GROWTH-FACTOR; EXTRACELLULAR-MATRIX; DEGRADATION-PRODUCTS; CHONDROMODULIN-I; DOWN-REGULATION; BONE; ANGIOGENESIS; CHONDROCYTES; EXPRESSION; MARROW;
D O I
10.1016/j.actbio.2016.07.034
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Limited supplies of healthy autologous or allogeneic cartilage sources have inspired a growing interest in xenogeneic cartilage matrices as biological scaffolds for cartilage tissue engineering. The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible. Human MSCs cultured on hydrogels from shark skull cartilage, pig articular cartilage, and pig auricular cartilage ECM had increased expression of chondrocyte markers and decreased secretion of angiogenic factors VEGF-A and FGF2 in comparison to MSCs cultured on tissue culture polystyrene (TCPS) at one week. MSCs grown on shark ECM gels had decreased type-1 collagen mRNA as compared to all other groups. Degradation products of the cartilage ECM gels and soluble factors released by the matrices increased chondrogenic and decreased angiogenic mRNA levels, indicating that the processed ECM retains biochemically active proteins that can stimulate chondrogenic differentiation. In conclusion, this work supports the use of cartilage matrix-derived hydrogels for chondrogenic differentiation of MSCs and cartilage tissue engineering. Longer-term studies and positive controls will be needed to support these results to definitively demonstrate stimulation of chondrocyte differentiation, and particularly to verify that calcification without endochondral ossification does not occur as it does in shark cartilage. Statement of Significance The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible for this induction. Sharks are an especially interesting model for cartilage regeneration because their entire skeleton is composed of cartilage and they do not undergo endochondral ossification. Culturing human MSCs on porcine and shark cartilage ECM gels directly, with ECM gel conditioned media, or degradation products increased mRNA levels of chondrogenic factors while decreasing angiogenic factors. These studies indicate that xenogeneic cartilage ECMs have potential as biodegradable scaffolds capable of stimulating chondrogenesis while preventing angiogenesis for regenerative medicine applications and that ECM species selection can yield differential effects. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [21] Cartilage Oligomeric Matrix Protein Gene Multilayers Inhibit Osteogenic Differentiation and Promote Chondrogenic Differentiation of Mesenchymal Stem Cells
    Guo, Peng
    Shi, Zhong-Li
    Liu, An
    Lin, Tiao
    Bi, Fang-Gang
    Shi, Ming-Min
    Yan, Shi-Gui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (11): : 20117 - 20133
  • [22] Chondrogenic differentiation of human marrow-derived mesenchymal stem cells.
    Mackay, AM
    Beck, SC
    Murphy, JM
    Barry, FP
    Pittenger, MF
    MOLECULAR BIOLOGY OF THE CELL, 1996, 7 : 3388 - 3388
  • [23] DIFFERENCES IN HUMAN MESENCHYMAL STEM CELL SECRETOMES DURING CHONDROGENIC INDUCTION
    Gardner, O. F. W.
    Fahy, N.
    Alini, M.
    Stoddart, M. J.
    EUROPEAN CELLS & MATERIALS, 2016, 31 : 221 - 235
  • [24] Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin
    Fan, Litong
    Chen, Jiaqing
    Tao, Yanmeng
    Heng, Boon Chin
    Yu, Jiakuo
    Yang, Zheng
    Ge, Zigang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2019, 37 (06) : 1387 - 1397
  • [25] Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells
    Xue, Ke
    Jiang, Yongkang
    Zhang, Xiaodie
    Wu, Jun
    Qi, Lin
    Liu, Kai
    ADIPOCYTE, 2021, 10 (01) : 322 - 337
  • [26] Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells
    Hwang, Nathaniel S.
    Varghese, Shyni
    Puleo, Christopher
    Zhang, Zijun
    Elisseeff, Jennifer
    JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 212 (02) : 281 - 284
  • [27] Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow
    Mackay, AM
    Beck, SC
    Murphy, JM
    Barry, FP
    Chichester, CO
    Pittenger, MF
    TISSUE ENGINEERING, 1998, 4 (04): : 415 - 428
  • [28] Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets
    Xue, Ji Xin
    Gong, Yi Yi
    Zhou, Guang Dong
    Liu, Wei
    Cao, Yilin
    Zhang, Wen Jie
    BIOMATERIALS, 2012, 33 (24) : 5832 - 5840
  • [29] Lung Tissue Derived Extracellular Matrix Hydrogels Promote Mouse Mesenchymal Stem Cell Proliferation, Attachment, And Differentiation
    Pouliot, R.
    Malik, M.
    Heise, R. L.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [30] Expansion and chondrogenic differentiation of human mesenchymal stem cells
    Weber, C.
    Gokorsch, S.
    Czermak, P.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2007, 30 (07): : 611 - 618