Hydrogels derived from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation

被引:33
|
作者
Burnsed, Olivia A. [1 ,2 ]
Schwartz, Zvi [3 ,4 ]
Marchand, Katherine O. [5 ]
Hyzy, Sharon L. [3 ]
Olivares-Navarrete, Rene [3 ]
Boyan, Barbara D. [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[3] Virginia Commonwealth Univ, Dept Biomed Engn, Richmond, VA USA
[4] Univ Texas Hlth Sci Ctr San Antonio, Dept Periodont, San Antonio, TX 78229 USA
[5] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Cartilage; ECM (extracellular matrix); Mesenchymal stem cell; Cartilage tissue engineering; ENDOTHELIAL GROWTH-FACTOR; EXTRACELLULAR-MATRIX; DEGRADATION-PRODUCTS; CHONDROMODULIN-I; DOWN-REGULATION; BONE; ANGIOGENESIS; CHONDROCYTES; EXPRESSION; MARROW;
D O I
10.1016/j.actbio.2016.07.034
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Limited supplies of healthy autologous or allogeneic cartilage sources have inspired a growing interest in xenogeneic cartilage matrices as biological scaffolds for cartilage tissue engineering. The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible. Human MSCs cultured on hydrogels from shark skull cartilage, pig articular cartilage, and pig auricular cartilage ECM had increased expression of chondrocyte markers and decreased secretion of angiogenic factors VEGF-A and FGF2 in comparison to MSCs cultured on tissue culture polystyrene (TCPS) at one week. MSCs grown on shark ECM gels had decreased type-1 collagen mRNA as compared to all other groups. Degradation products of the cartilage ECM gels and soluble factors released by the matrices increased chondrogenic and decreased angiogenic mRNA levels, indicating that the processed ECM retains biochemically active proteins that can stimulate chondrogenic differentiation. In conclusion, this work supports the use of cartilage matrix-derived hydrogels for chondrogenic differentiation of MSCs and cartilage tissue engineering. Longer-term studies and positive controls will be needed to support these results to definitively demonstrate stimulation of chondrocyte differentiation, and particularly to verify that calcification without endochondral ossification does not occur as it does in shark cartilage. Statement of Significance The objectives of this study were to determine if shark and pig cartilage extracellular matrix (ECM) hydrogels can stimulate chondrocytic differentiation of mesenchymal stem cells (MSCs) without exogenous growth factors and to determine if the soluble factors retained by these ECM hydrogels are responsible for this induction. Sharks are an especially interesting model for cartilage regeneration because their entire skeleton is composed of cartilage and they do not undergo endochondral ossification. Culturing human MSCs on porcine and shark cartilage ECM gels directly, with ECM gel conditioned media, or degradation products increased mRNA levels of chondrogenic factors while decreasing angiogenic factors. These studies indicate that xenogeneic cartilage ECMs have potential as biodegradable scaffolds capable of stimulating chondrogenesis while preventing angiogenesis for regenerative medicine applications and that ECM species selection can yield differential effects. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [1] Natural based hydrogels promote chondrogenic differentiation of human mesenchymal stem cells
    Tehrani, Tina Zahedi
    Irani, Shiva
    Ardeshirylajimi, Abdolreza
    Seyedjafari, Ehsan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [2] Decellularized Human Umbilical Tissue-Derived Hydrogels Promote Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells
    Ramzan, Faiza
    Ekram, Sobia
    Frazier, Trivia
    Salim, Asmat
    Mohiuddin, Omair Anwar
    Khan, Irfan
    BIOENGINEERING-BASEL, 2022, 9 (06):
  • [3] Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices
    Moeinzadeh, Seyedsina
    Monavarian, Mehri
    Kader, Safaa
    Jabbari, Esmaiel
    TISSUE ENGINEERING PART A, 2019, 25 (3-4) : 234 - 247
  • [4] Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro
    Salamon, Achim
    van Vlierberghe, Sandra
    van Nieuwenhove, Ine
    Baudisch, Frank
    Graulus, Geert-Jan
    Benecke, Verena
    Alberti, Kristin
    Neumann, Hans-Georg
    Rychly, Joachim
    Martins, Jose C.
    Dubruel, Peter
    Peters, Kirsten
    MATERIALS, 2014, 7 (02) : 1342 - 1359
  • [5] Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles
    Yin, Heyong
    Wang, Yu
    Sun, Zhen
    Sun, Xun
    Xu, Yichi
    Li, Pan
    Meng, Haoye
    Yu, Xiaoming
    Xiao, Bo
    Fan, Tian
    Wang, Yiguo
    Xu, Wenjing
    Wang, Aiyuan
    Guo, Quanyi
    Peng, Jiang
    Lu, Shibi
    ACTA BIOMATERIALIA, 2016, 33 : 96 - 109
  • [6] Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage
    Liu, Shao Qiong
    Tian, Quan
    Hedrick, James L.
    Hui, James Hoi Po
    Ee, Pui Lai Rachel
    Yang, Yi Yan
    BIOMATERIALS, 2010, 31 (28) : 7298 - 7307
  • [7] INFLUENCE OF CARTILAGE MICROENVIRONMENT ON CHONDROGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS
    Leyh, M.
    Tingart, M.
    Weger, L.
    Grifka, J.
    Graessel, S.
    OSTEOARTHRITIS AND CARTILAGE, 2010, 18 : S83 - S83
  • [8] Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation
    Moulisova, Vladimira
    Poveda-Reyes, Sara
    Sanmartin-Masia, Esther
    Quintanilla-Sierra, Luis
    Salmeron-Sanchez, Manuel
    Gallego Ferrer, Gloria
    ACS OMEGA, 2017, 2 (11): : 7609 - 7620
  • [9] Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels
    Noeth, Ulrich
    Rackwitz, Lars
    Heymer, Andrea
    Weber, Meike
    Baumann, Bernd
    Steinert, Andre
    Schuetze, Norbert
    Jakob, Franz
    Eulert, Jochen
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 83A (03) : 626 - 635
  • [10] Growth factor combination for chondrogenic induction from human mesenchymal stem cell
    Indrawattana, N
    Chen, GP
    Tadokoro, M
    Shann, LH
    Ohgushi, H
    Tateishi, T
    Tanaka, J
    Bunyaratvej, A
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 320 (03) : 914 - 919