Super Finsler connection of superparticle on two-dimensional curved spacetime

被引:1
|
作者
Ootsuka, Takayoshi [1 ,2 ]
Ishida, Muneyuki [3 ]
Tanaka, Erico [4 ]
Yahagi, Ryoko [5 ]
机构
[1] Ochanomizu Univ, Dept Phys, Bunkyo Ku, 2-1-1 Otsuka, Tokyo 1128610, Japan
[2] NPO Gakujutsu Kenkyu Network, Tokyo, Japan
[3] Meisei Univ, Dept Phys, 2-1-1 Hodokubo, Hino, Tokyo 1918506, Japan
[4] Kagoshima Univ, Dept Math & Comp Sci, 1-21-35 Korimoto Kagoshima, Kagoshima 8908580, Japan
[5] Tokyo Univ Sci, Dept Phys, Fac Sci, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
基金
日本学术振兴会;
关键词
Finsler geometry; superparticle; nonlinear connection; pseudoparticle mechanics; auto-parallel equations; supermanifold; GEOMETRY;
D O I
10.1142/S0219887819500555
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the Casalbuoni-Brink-Schwarz superparticle model on a 2-dimensional curved spacetime as a super Finsler metric defined on a (2,2)-dimensional supermanifold. We propose a nonlinear Finsler connection which preserves this Finsler metric and calculates it explicitly. The equations of motion of the superparticle are reconstructed in the form of auto-parallel equations expressed by the super nonlinear connection.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Geodesics in a Two-Dimensional Model of Closed Spacetime
    Arkhipov, V. V.
    RUSSIAN PHYSICS JOURNAL, 2014, 57 (08) : 1023 - 1029
  • [12] Light in curved two-dimensional space
    Schultheiss, Vincent H.
    Batz, Sascha
    Peschel, Ulf
    ADVANCES IN PHYSICS-X, 2020, 5 (01):
  • [13] Two-dimensional Materials in Curved Geometry
    Minkyu Park
    S. H. Rhim
    Journal of the Korean Physical Society, 2020, 77 : 997 - 1001
  • [14] Two-dimensional Materials in Curved Geometry
    Park, Minkyu
    Rhim, S. H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (11) : 997 - 1001
  • [15] Conductivity of a two-dimensional curved microconstriction
    Namiranian, A
    Khajehpoura, MRH
    Kolesnichenko, YA
    Shevchenko, SN
    PHYSICA E, 2001, 10 (04): : 549 - 552
  • [16] Two-dimensional Finsler metrics with constant flag curvature
    Zhongmin Shen
    manuscripta mathematica, 2002, 109 : 349 - 366
  • [17] Curved two-dimensional electron gases
    Lorke, A
    Böhm, S
    Wegscheider, W
    SUPERLATTICES AND MICROSTRUCTURES, 2003, 33 (5-6) : 347 - 356
  • [18] Curved two-dimensional arrays in ultrasound
    Kirkebo, JE
    Austeng, A
    Holm, S
    2004 IEEE Ultrasonics Symposium, Vols 1-3, 2004, : 1274 - 1277
  • [19] Conformal Hyperbolic Numbers and Two-dimensional Finsler Geometry
    Rinat G. Zaripov
    Advances in Applied Clifford Algebras, 2017, 27 : 1741 - 1760
  • [20] Conformal Hyperbolic Numbers and Two-dimensional Finsler Geometry
    Zaripov, Rinat G.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1741 - 1760