Mean field theory for sigmoid belief networks

被引:202
|
作者
Saul, LK
Jaakkola, T
Jordan, MI
机构
[1] Ctr. for Biol./Compl. Learning, Massachusetts Inst. of Technology, Cambridge, MA 02139, 79 Amherst Street
来源
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH | 1996年 / 4卷
关键词
D O I
10.1613/jair.251
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition-the classification of handwritten digits.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [21] CLASSIFICATION OF NETWORKS OF AUTOMATA BY DYNAMIC MEAN-FIELD THEORY
    BURDA, Z
    JURKIEWICZ, J
    FLYVBJERG, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (13): : 3073 - 3081
  • [22] Mean-field theory of assortative networks of phase oscillators
    Restrepo, Juan G.
    Ott, Edward
    EPL, 2014, 107 (06)
  • [23] Beyond dynamical mean-field theory of neural networks
    Massimiliano Muratori
    Bruno Cessac
    BMC Neuroscience, 14 (Suppl 1)
  • [24] Mean field theory of epidemic spreading with effective contacts on networks
    Wu, Qingchu
    Chen, Shufang
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 359 - 364
  • [25] Randomly evolving idiotypic networks: Modular mean field theory
    Schmidtchen, Holger
    Behn, Ulrich
    PHYSICAL REVIEW E, 2012, 86 (01)
  • [26] MEAN FIELD-THEORY OF THE MICROPHASE SEPARATION IN INTERPENETRATING NETWORKS
    SHULZ, M
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (08): : 5631 - 5637
  • [27] Dynamic mean-field theory for continuous random networks
    Zuniga-Galindo, W. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (12)
  • [28] Learning Sigmoid Belief Networks via Monte Carlo Expectation Maximization
    Song, Zhao
    Henao, Ricardo
    Carlson, David
    Carin, Lawrence
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1347 - 1355
  • [29] Cooperative Localization for Mobile Networks: A Distributed Belief Propagation - Mean Field Message Passing Algorithm
    Cakmak, Burak
    Urup, Daniel N.
    Meyer, Florian
    Pedersen, Troels
    Fleury, Bernard H.
    Hlawatsch, Franz
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) : 828 - 832
  • [30] Fast Structured Prediction Using Large Margin Sigmoid Belief Networks
    Xu Miao
    Rajesh P. N. Rao
    International Journal of Computer Vision, 2012, 99 : 302 - 318