Mean field theory for sigmoid belief networks

被引:202
|
作者
Saul, LK
Jaakkola, T
Jordan, MI
机构
[1] Ctr. for Biol./Compl. Learning, Massachusetts Inst. of Technology, Cambridge, MA 02139, 79 Amherst Street
来源
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH | 1996年 / 4卷
关键词
D O I
10.1613/jair.251
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition-the classification of handwritten digits.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 50 条
  • [1] Mean field theory for sigmoid belief networks
    Saul, Lawrence K.
    Jaakkola, Tommi
    Jordan, Michael I.
    Journal of Artificial Intelligence Research, 1996, 4 : 61 - 76
  • [2] A variational mean-field theory for sigmoidal belief networks
    Bhattacharyya, C
    Keerthi, SS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 374 - 380
  • [3] A mean field approach to MAP in belief networks
    Peng, Y
    Jin, M
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL V, 2000, : 652 - 657
  • [4] Mean-field methods for a special class of Belief Networks
    Bhattacharyya, C
    Keerthi, SS
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2001, 15 : 91 - 114
  • [5] Mean-field methods for a special class of Belief networks
    Dept. of Computer Science and Automation, Indian Institute of Science, Bangalore, Karnataka, 560012, India
    不详
    J Artif Intell Res, (91-114):
  • [6] Beyond mean field theory: statistical field theory for neural networks
    Buicel, Michael A.
    Chow, Carson C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [7] Incremental sigmoid belief networks for grammar learning
    Department of Computer Science, University of Geneva, 7 route de Drize, A 1227, Carouge, Switzerland
    不详
    J. Mach. Learn. Res., (3541-3570):
  • [8] Incremental Sigmoid Belief Networks for Grammar Learning
    Henderson, James
    Titov, Ivan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3541 - 3570
  • [9] Mean field theory for asymmetric neural networks
    Kappen, HJ
    Spanjers, JJ
    PHYSICAL REVIEW E, 2000, 61 (05): : 5658 - 5663
  • [10] Mean field theory for asymmetric neural networks
    Kappen, H.J.
    Spanjers, J.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05): : 5658 - 5663