A comparison of convex and non-convex compressed sensing applied to multidimensional NMR

被引:43
|
作者
Kazimierczuk, Krzysztof [1 ]
Orekhov, Vladislav Yu [2 ]
机构
[1] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland
[2] Univ Gothenburg, Swedish NMR Ctr, S-40530 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Non-uniform sampling; Compressed sensing; Multi-dimensional decomposition; Protein NMR; SIGNAL RECONSTRUCTION; FOURIER-TRANSFORM; RESOLUTION; SPECTROSCOPY; ACQUISITION; PRINCIPLES; FREQUENCY;
D O I
10.1016/j.jmr.2012.08.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The resolution of multidimensional NMR spectra can be severely limited when regular sampling based on the Nyquist-Shannon theorem is used. The theorem binds the sampling rate with a bandwidth of a sampled signal and thus implicitly creates a dependence between the line width and the time of experiment, often making the latter one very long. Recently, Candes et al. (2006)[25] formulated a non-linear sampling theorem that determines the required number of sampling points to be dependent mostly on the number of peaks in a spectrum and only slightly on the number of spectral points. The result was pivotal for rapid development and broad use of signal processing method called compressed sensing. In our previous work, we have introduced compressed sensing to multidimensional NMR and have shown examples of reconstruction of two-dimensional spectra. In the present paper we discuss in detail the accuracy and robustness of two compressed sensing algorithms: convex (iterative soft thresholding) and non-convex (iteratively re-weighted least squares with local l(0)-norm) in application to two- and three-dimensional datasets. We show that the latter method is in many terms more effective, which is in line with recent works on the theory of compressed sensing. We also present the comparison of both approaches with multidimensional decomposition which is one of the established methods for processing of non-linearly sampled data. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Non-convex Lp Nuclear Norm based ADMM Framework for Compressed Sensing
    Zhao, Chen
    Zhang, Jian
    Ma, Siwei
    Gao, Wen
    2016 DATA COMPRESSION CONFERENCE (DCC), 2016, : 161 - 170
  • [22] Pattern search optimization applied to convex and non-convex economic dispatch
    Aihajri, M. F.
    Ei-Hawary, M. E.
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1582 - 1586
  • [23] Nesting of non-convex figures in non-convex contours
    Vinade, C.
    Dias, A.
    Informacion Tecnologica, 2000, 11 (01): : 149 - 156
  • [24] Reconstruction of compressed video via non-convex minimization
    Ji, Chao
    Tian, Jinshou
    Sheng, Liang
    He, Kai
    Xin, Liwei
    Yan, Xin
    Xue, Yanhua
    Zhang, Minrui
    Chen, Ping
    Wang, Xing
    AIP ADVANCES, 2020, 10 (11)
  • [25] A non-convex regularization approach for compressive sensing
    Fan, Ya-Ru
    Buccini, Alessandro
    Donatelli, Marco
    Huang, Ting-Zhu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 563 - 588
  • [26] A non-convex regularization approach for compressive sensing
    Ya-Ru Fan
    Alessandro Buccini
    Marco Donatelli
    Ting-Zhu Huang
    Advances in Computational Mathematics, 2019, 45 : 563 - 588
  • [27] Optimization of Non-convex Multiband Cooperative Sensing
    Khwaja, A. S.
    Naeem, M.
    Anpalagan, A.
    Venetsanopoulos, A.
    2014 27TH BIENNIAL SYMPOSIUM ON COMMUNICATIONS (QBSC), 2014, : 61 - 65
  • [28] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [29] Comments on convex and non-convex figures
    Tietze, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1929, 160 (1/4): : 67 - 69
  • [30] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92