MEANS: python']python package for Moment Expansion Approximation, iNference and Simulation

被引:8
|
作者
Fan, Sisi [1 ]
Geissmann, Quentin [1 ]
Lakatos, Eszter [1 ]
Lukauskas, Saulius [1 ]
Ale, Angelique [1 ]
Babtie, Ann C. [1 ]
Kirk, Paul D. W. [2 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] MRC Biostat Unit, Cambridge CB2 0SR, England
基金
英国生物技术与生命科学研究理事会;
关键词
CLOSURE APPROXIMATIONS; KINETICS; SOLVERS;
D O I
10.1093/bioinformatics/btw229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis.
引用
下载
收藏
页码:2863 / 2865
页数:3
相关论文
共 50 条
  • [1] Simulation-based inference with the Python Package sbijax
    Dirmeier, Simon
    Ulzega, Simone
    Mira, Antonietta
    Albert, Carlo
    arXiv,
  • [2] pysimm: A python']python package for simulation of molecular systems
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2017, 6 : 7 - 12
  • [3] COSIFER: a Python']Python package for the consensus inference of molecular interaction networks
    Manica, Matteo
    Bunne, Charlotte
    Mathis, Roland
    Cadow, Joris
    Ahsen, Mehmet Eren
    Stolovitzky, Gustavo A.
    Martinez, Maria Rodriguez
    BIOINFORMATICS, 2021, 37 (14) : 2070 - 2072
  • [4] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    SOFTWAREX, 2023, 21
  • [5] CELL: a Python']Python package for cluster expansion with a focus on complex alloys
    Rigamonti, Santiago
    Troppenz, Maria
    Kuban, Martin
    Huebner, Axel
    Draxl, Claudia
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [6] ArtPop: A Stellar Population and Image Simulation Python']Python Package
    Greco, Johnny P.
    Danieli, Shany
    ASTROPHYSICAL JOURNAL, 2022, 941 (01):
  • [7] WEDAP: A Python']Python Package for Streamlined Plotting of Molecular Simulation Data
    Yang, Darian T.
    Chong, Lillian T.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (15) : 5749 - 5755
  • [8] Update 0.2 to "pysimm: A python']python package for simulation of molecular systems"
    Demidov, Alexander G.
    Fortunato, Michael E.
    Colina, Coray M.
    SOFTWAREX, 2018, 7 : 70 - 73
  • [9] TAPsolver: A Python']Python package for the simulation and analysis of TAP reactor experiments
    Yonge, Adam
    Kunz, M. Ross
    Batchu, Rakesh
    Fang, Zongtang
    Issac, Tobin
    Fushimi, Rebecca
    Medford, Andrew J.
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [10] H-wave - A Python']Python package for the Hartree-Fock approximation and the random phase approximation
    Aoyama, Tatsumi
    Yoshimi, Kazuyoshi
    Ido, Kota
    Motoyama, Yuichi
    Kawamura, Taiki
    Misawa, Takahiro
    Kato, Takeo
    Kobayashi, Akito
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 298