Defective g-C3N4 Prepared by the NaBH4 Reduction for High-Performance H2 Production

被引:108
|
作者
Wen, Yuanjing [1 ]
Qu, Dan [1 ]
An, Li [1 ]
Gao, Xiang [1 ]
Jiang, Wenshuai [1 ]
Wu, Dandan [1 ]
Yang, Dongxue [1 ]
Sun, Zaicheng [1 ]
机构
[1] Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Beijing Key Lab Green Catalysis & Separat, 100 Pingleyuan, Beijing 100124, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Defects; Graphitic carbon nitride; Chemical reduction; Charge separation; H-2; production; ENHANCED PHOTOCATALYTIC ACTIVITY; HYDROGEN-PRODUCTION; DOPED G-C3N4; NANOSHEETS; SURFACE; EVOLUTION; WATER; NANOMATERIALS; COCATALYSTS; ABSORPTION;
D O I
10.1021/acssuschemeng.8b05124
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Defects play a significant part in promoting photocatalytic activity for H-2 production. Various methods such as chemical reduction have been performed to metal oxide based photocatalysts. Herein, we present the NaBH4 reduction route to introduce the defects into the graphitic carbon nitride (g-C3N4) to enhance photocatalytic activity. A new -C N group is observed in the FTIR spectra of treated g-C3N4 nanosheets indicating the presence of structural defects. At the same time, the B signal appears in the X-ray photoelectron spectroscopy analysis, suggesting that B is doped in the g-C3N4 during the treatment. All these results manifested that multiple types of defects are introduced in the g-C3N4 during the NaBH4 treatment. The UV-vis spectra illustrate that the absorption band edge of g-C3N4 is extended from 420 to 450 nm after NaBH4 treatment. This demonstrates that the band gap of g-C3N4 turns narrow owing to the introduction of defects. Photocatalytic H-2 production of defective g-C3N4 is,-5-fold better than that of pristine g-C3N4. To understand the enhanced mechanism, the apparent quantum efficiency, photoluminescent spectra, transient photocurrent and electrochemical impedance spectra are investigated. The results show that the charge separation efficiency is greatly strengthened in the defective g-C3N4. Upon these findings, the enhancement of catalytic activity can be attributed to both the broad light adsorption range and highly efficient charge separation process.
引用
收藏
页码:2343 / 2349
页数:13
相关论文
共 50 条
  • [31] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jiang, Jizhou
    Xiong, Zhiguo
    Wang, Haitao
    Liao, Guodong
    Bai, Saishuai
    Zou, Jing
    Wu, Pingxiu
    Zhang, Peng
    Li, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 15 - 24
  • [32] Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites
    Xu, Quanlong
    Zhu, Bicheng
    Cheng, Bei
    Yu, Jiaguo
    Zhou, Minghua
    Ho, Wingkei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
  • [33] g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution
    Liu, Yanfei
    Ma, Zhen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 615 (615)
  • [34] g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution
    Chen, Yihang
    Liu, Yanfei
    Ma, Zhen
    PROCESSES, 2021, 9 (06)
  • [35] Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4
    Speltini, Andrea
    Scalabrini, Andrea
    Maraschi, Federica
    Sturini, Michela
    Pisanu, Ambra
    Malavasi, Lorenzo
    Profumo, Antonella
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) : 14925 - 14933
  • [36] Facilitated photocatalytic H2 production on Cu-coordinated mesoporous g-C3N4 nanotubes
    Su, Zhuizhui
    Zhang, Jianling
    Tan, Zhonghao
    Hu, Jingyang
    Zhang, Fengtao
    Duan, Ran
    Yao, Lei
    Han, Buxing
    Zhao, Yingzhe
    Yang, Yisen
    GREEN CHEMISTRY, 2023, 25 (07) : 2577 - 2582
  • [37] NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4
    Chen, Zhe
    Yang, Shuibin
    Tian, Zhengfang
    Zhu, Bicheng
    APPLIED SURFACE SCIENCE, 2019, 469 : 657 - 665
  • [38] The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance
    He, Fang
    Chen, Gang
    Zhou, Yansong
    Yu, Yaoguang
    Zheng, Yi
    Hao, Sue
    CHEMICAL COMMUNICATIONS, 2015, 51 (90) : 16244 - 16246
  • [39] Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity
    Yuan, Yong-Jun
    Shen, Zhikai
    Wu, Shiting
    Su, Yibing
    Pei, Lang
    Ji, Zhenguo
    Ding, Mingye
    Bai, Wangfeng
    Chen, Yifan
    Yu, Zhen-Tao
    Zou, Zhigang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 120 - 128
  • [40] The preparation of spherical mesoporous g-C3N4 with highly improved photocatalytic performance for H2 production and rhodamine B degradation
    Shi, Lei
    Wang, Fangxiao
    Sun, Jianmin
    MATERIALS RESEARCH BULLETIN, 2019, 113 : 115 - 121