Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

被引:21
|
作者
Lo, Chi-Wei [1 ]
Li, Chensha [2 ]
Jiang, Hongrui [1 ,2 ]
机构
[1] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
PHOTORECHARGEABLE BATTERY; CELLS; POWER;
D O I
10.1063/1.3651084
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m(2) of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm(2). After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3651084]
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Photochemical conversion and storage of solar energy
    Krishnan, V
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 1997, 109 (06): : 363 - 364
  • [32] Photochemical conversion and storage of solar energy
    Lévy-Clément, C
    COMPTES RENDUS CHIMIE, 2006, 9 (5-6) : 565 - 567
  • [33] Photochemical conversion and storage of solar energy
    Lévy-Clément, C
    COMPTES RENDUS CHIMIE, 2006, 9 (02) : 169 - 171
  • [34] Materials for solar energy conversion and storage
    Galli, Giulia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Conversion and storage of solar energy for cooling
    Wang, Wenbin
    Shi, Yusuf
    Zhang, Chenlin
    Li, Renyuan
    Wu, Mengchun
    Zhuo, Sifei
    Aleid, Sara
    Wang, Peng
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (01) : 136 - 145
  • [36] Photoelectrochemical, all-soluble iron redox-flow battery for the direct conversion of solar energy
    Tichter, T.
    Naumann, K.
    Vesborg, P. C. K.
    ELECTROCHIMICA ACTA, 2024, 487
  • [37] Ferroelectric materials for solar energy conversion: photoferroics revisited
    Butler, Keith T.
    Frost, Jarvist M.
    Walsh, Aron
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 838 - 848
  • [38] Energy storage and magnetoelectric coupling in ferroelectric–ferrite composites
    S. Shankar
    Manish Kumar
    Vinita Tuli
    O. P. Thakur
    M. Jayasimhadri
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 18352 - 18357
  • [39] Enhanced Conversion and Storage of Solar Energy Using TiO2 Nanobelts in an All-Vanadium Photoelectrochemical Storage Cell
    Shen, Yi
    Wei, Zi
    Liu, Dong
    Liu, Fuqiang
    JOINT GENERAL SESSION: BATTERIES AND ENERGY STORAGE -AND- FUEL CELLS, ELECTROLYTES, AND ENERGY CONVERSION, 2016, 72 (08): : 179 - 185
  • [40] Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
    Ham, Moon-Ho
    Choi, Jong Hyun
    Boghossian, Ardemis A.
    Jeng, Esther S.
    Graff, Rachel A.
    Heller, Daniel A.
    Chang, Alice C.
    Mattis, Aidas
    Bayburt, Timothy H.
    Grinkova, Yelena V.
    Zeiger, Adam S.
    Van Vliet, Krystyn J.
    Hobbie, Erik K.
    Sligar, Stephen G.
    Wraight, Colin A.
    Strano, Michael S.
    NATURE CHEMISTRY, 2010, 2 (11) : 929 - 936