Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

被引:124
|
作者
Uchida, K. [1 ,2 ]
Ota, T. [1 ,2 ]
Adachi, H. [2 ,3 ]
Xiao, J. [4 ,5 ]
Nonaka, T. [1 ,2 ]
Kajiwara, Y. [1 ,2 ]
Bauer, G. E. W. [1 ,6 ]
Maekawa, S. [2 ,3 ]
Saitoh, E. [1 ,2 ,3 ,7 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[6] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands
[7] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
ROOM-TEMPERATURE; FERROMAGNET; TRANSPORT; INJECTION;
D O I
10.1063/1.4716012
中图分类号
O59 [应用物理学];
学科分类号
摘要
The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to "thermal spin pumping" and the ISHE signal. The non-equilibrium state of metallic magnets (e.g., Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g., Y3Fe5O12), both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4716012]
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Spin-orbit coupling induced robust spin-Seebeck effect and pure thermal spin currents in achiral molecule systems
    Fu, Hua-Hua
    Du, Gui-Fang
    Wu, Dan-Dan
    Liu, Qing-Bo
    Wu, Ruqian
    PHYSICAL REVIEW B, 2019, 100 (08)
  • [22] Enhancement of Spin-Seebeck Voltage by Spin-Hall Thermopile
    Uchida, Ken-ichi
    Nonaka, Tatsumi
    Yoshino, Tatsuro
    Kikkawa, Takashi
    Kikuchi, Daisuke
    Saitoh, Eiji
    APPLIED PHYSICS EXPRESS, 2012, 5 (09)
  • [23] Bulk magnon spin current theory for the longitudinal spin Seebeck effect
    Rezende, S. M.
    Rodriguez-Suarez, R. L.
    Cunha, R. O.
    Ortiz, J. C. Lopez
    Azevedo, A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 400 : 171 - 177
  • [24] Magnon Pairs and Spin-Nematic Correlation in the Spin Seebeck Effect
    Hirobe, Daichi
    Sato, Masahiro
    Hagihala, Masato
    Shiomi, Yuki
    Masuda, Takatsugu
    Saitoh, Eiji
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [25] Role of Magnon-Magnon Scattering in Magnon Polaron Spin Seebeck Effect
    Shi, Zhong
    Xi, Qing
    Li, Junxue
    Li, Yufei
    Aldosary, Mohammed
    Xu, Yadong
    Zhou, Jun
    Zhou, Shi-Ming
    Shi, Jing
    PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [26] Metal-free magnetism, spin-dependent Seebeck effect, and spin-Seebeck diode effect in armchair graphene nanoribbons
    Xiao-Qin Tang
    Xue-Mei Ye
    Xing-Yi Tan
    Da-Hua Ren
    Scientific Reports, 8
  • [27] Electric detection of the spin-Seebeck effect in ferromagnetic metals (invited)
    Uchida, K.
    Ota, T.
    Harii, K.
    Ando, K.
    Nakayama, H.
    Saitoh, E.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09)
  • [28] Influence of interface condition on spin-Seebeck effects
    Qiu, Z.
    Hou, D.
    Uchida, K.
    Saitoh, E.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (16)
  • [29] Theory of magnon-driven spin Seebeck effect
    Xiao, Jiang
    Bauer, Gerrit E. W.
    Uchida, Ken-chi
    Saitoh, Eiji
    Maekawa, Sadamichi
    PHYSICAL REVIEW B, 2010, 81 (21)
  • [30] Magnetic nanotubes: A new material platform to realize a robust spin-Seebeck effect and a perfect thermal spin-filtering effect
    Wu, Dan-Dan
    Fu, Hua-Hua
    Liu, Qing-Bo
    Du, Gui-Fang
    Wu, Ruqian
    PHYSICAL REVIEW B, 2018, 98 (11)