Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect

被引:124
|
作者
Uchida, K. [1 ,2 ]
Ota, T. [1 ,2 ]
Adachi, H. [2 ,3 ]
Xiao, J. [4 ,5 ]
Nonaka, T. [1 ,2 ]
Kajiwara, Y. [1 ,2 ]
Bauer, G. E. W. [1 ,6 ]
Maekawa, S. [2 ,3 ]
Saitoh, E. [1 ,2 ,3 ,7 ]
机构
[1] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan
[3] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[6] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands
[7] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
关键词
ROOM-TEMPERATURE; FERROMAGNET; TRANSPORT; INJECTION;
D O I
10.1063/1.4716012
中图分类号
O59 [应用物理学];
学科分类号
摘要
The spin-Seebeck effect (SSE) in ferromagnetic metals and insulators has been investigated systematically by means of the inverse spin-Hall effect (ISHE) in paramagnetic metals. The SSE generates a spin voltage as a result of a temperature gradient in a ferromagnet, which injects a spin current into an attached paramagnetic metal. In the paramagnet, this spin current is converted into an electric field due to the ISHE, enabling the electric detection of the SSE. The observation of the SSE is performed in longitudinal and transverse configurations consisting of a ferromagnet/paramagnet hybrid structure, where thermally generated spin currents flowing parallel and perpendicular to the temperature gradient are detected, respectively. Our results explain the SSE in terms of a two-step process: (1) the temperature gradient creates a non-equilibrium state in the ferromagnet governed by both magnon and phonon propagations and (2) the non-equilibrium between magnons in the ferromagnet and electrons in the paramagnet at the contact interface leads to "thermal spin pumping" and the ISHE signal. The non-equilibrium state of metallic magnets (e.g., Ni81Fe19) under a temperature gradient is governed mainly by the phonons in the sample and the substrate, while in insulating magnets (e.g., Y3Fe5O12), both magnon and phonon propagations appear to be important. The phonon-mediated non-equilibrium that drives the thermal spin pumping is confirmed also by temperature-dependent measurements, giving rise to a giant enhancement of the SSE signals at low temperatures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4716012]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spin-Seebeck Effect: A Phonon Driven Spin Distribution
    Jaworski, C. M.
    Yang, J.
    Mack, S.
    Awschalom, D. D.
    Myers, R. C.
    Heremans, J. P.
    PHYSICAL REVIEW LETTERS, 2011, 106 (18)
  • [2] Magnon spin-current theory for the longitudinal spin-Seebeck effect
    Rezende, S. M.
    Rodriguez-Suarez, R. L.
    Cunha, R. O.
    Rodrigues, A. R.
    Machado, F. L. A.
    Fonseca Guerra, G. A.
    Lopez Ortiz, J. C.
    Azevedo, A.
    PHYSICAL REVIEW B, 2014, 89 (01):
  • [3] Observation of the spin-Seebeck effect in a ferromagnetic semiconductor
    Jaworski, C. M.
    Yang, J.
    Mack, S.
    Awschalom, D. D.
    Heremans, J. P.
    Myers, R. C.
    NATURE MATERIALS, 2010, 9 (11) : 898 - 903
  • [4] Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect
    Agrawal, M.
    Vasyuchka, V. I.
    Serga, A. A.
    Kirihara, A.
    Pirro, P.
    Langner, T.
    Jungfleisch, M. B.
    Chumak, A. V.
    Papaioannou, E. Th.
    Hillebrands, B.
    PHYSICAL REVIEW B, 2014, 89 (22):
  • [5] Spin-Seebeck thermoelectric converter
    Kirihara, Akihiro
    Ishida, Masahiko
    Uchida, Ken-ichi
    Someya, Hiroko
    Iwasaki, Yuma
    Ihara, Kazuki
    Kohmoto, Shigeru
    Saitoh, Eiji
    Murakami, Tomoo
    2014 IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE (INEC), 2014,
  • [6] Long-range pure magnon spin diffusion observed in a nonlocal spin-Seebeck geometry
    Giles, Brandon L.
    Yang, Zihao
    Jamison, John S.
    Myers, Roberto C.
    PHYSICAL REVIEW B, 2015, 92 (22):
  • [7] Design of spin-Seebeck diode with spin semiconductors
    Zhang, Zhao-Qian
    Yang, Yu-Rong
    Fu, Hua-Hua
    Wu, Ruqian
    NANOTECHNOLOGY, 2016, 27 (50)
  • [8] Magnon Polarons in the Spin Seebeck Effect
    Kikkawa, Takashi
    Shen, Ka
    Flebus, Benedetta
    Duine, Rembert A.
    Uchida, Ken-ichi
    Qiu, Zhiyong
    Bauer, Gerrit E. W.
    Saitoh, Eiji
    PHYSICAL REVIEW LETTERS, 2016, 117 (20)
  • [9] Designing a Spin-Seebeck Diode
    Borlenghi, Simone
    Wang, Weiwei
    Fangohr, Hans
    Bergqvist, Lars
    Delin, Anna
    PHYSICAL REVIEW LETTERS, 2014, 112 (04)
  • [10] Spin-Seebeck effect and spin polarization in a multiple quantum dot molecule
    Ramos-Andrade, J. P.
    Pena, F. J.
    Gonzalez, A.
    Avalos-Ovando, O.
    Orellana, P. A.
    PHYSICAL REVIEW B, 2017, 96 (16)