Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo

被引:132
|
作者
Nakase, Ikuhiko [1 ]
Konishi, Yusuke [1 ]
Ueda, Masashi [2 ,3 ]
Saji, Hideo [3 ]
Futaki, Shiroh [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan
[2] Kyoto Univ, Kyoto Univ Hosp, Radioisotopes Res Lab, Fac Med, Kyoto 6068507, Japan
[3] Kyoto Univ, Grad Sch Pharmaceut Sci, Dept Pathofunct Bioanal, Kyoto 6068501, Japan
关键词
Arginine-rich cell-penetrating peptide; In vivo fluorescent imaging; Biodistribution; Tumor accumulation; Doxorubicin; Drug delivery; MEMBRANE-ASSOCIATED PROTEOGLYCANS; HUMAN BREAST-CANCER; MACROMOLECULAR THERAPEUTICS; TARGETED DELIVERY; IMPROVES SURVIVAL; PLASMA-MEMBRANE; FAB FRAGMENT; ADRIAMYCIN; MACROPINOCYTOSIS; PROTEINS;
D O I
10.1016/j.jconrel.2012.01.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the biodistribution of arginine-rich cell-penetrating peptides (CPPs) in tumor-xenografted nude mice after intravenous injection of fluorescently labeled CPPs using in vivo imaging. The CPPs used included HIV-1 Tat (48-60), penetratin, and the L-and D-enantiomers of oligoarginines (8, 12, and 16 residues), all of which are reported to have high cell penetration. Among the tested peptides, high accumulation in tumors was observed for the D-form of octaarginine (r8), and glycosaminoglycans played a key role. Injection of an r8-doxorubicin conjugate (4 mg doxorubicin/kg) effectively suppressed tumor proliferation, with no significant decrease in mouse weight, whereas administration of doxorubicin itself (6 mg/kg), yielding a similar degree of tumor-growth suppression, resulted in significant weight loss. These results suggest the potential of r8 as a prototypic tumor-targeting vector. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 50 条
  • [21] Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides
    Hao, Minglu
    Zhang, Lei
    Chen, Pu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [22] Tuning the pKa of Carboxyfluorescein with Arginine-Rich Cell-Penetrating Peptides for Intracellular pH Imaging
    Xia, Meng-Chan
    Cai, Lesi
    Yang, Yan
    Zhang, Sichun
    Zhang, Xinrong
    ANALYTICAL CHEMISTRY, 2019, 91 (14) : 9168 - 9173
  • [23] Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides
    Nakase, Ikuhiko
    Takeuchi, Toshihide
    Tanaka, Gen
    Futaki, Shiroh
    ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (4-5) : 598 - 607
  • [24] Cellular Internalization of Quantum Dots Noncovalently Conjugated with Arginine-Rich Cell-Penetrating Peptides
    Liu, Betty R.
    Li, Jheng-Fong
    Lu, Shu-Wan
    Lee, Han-Jung
    Huang, Yue-Wern
    Shannon, Katie B.
    Aronstam, Robert S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (10) : 6534 - 6543
  • [25] Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides
    Gautam, Ankur
    Sharma, Minakshi
    Vir, Pooja
    Chaudhary, Kumardeep
    Kapoor, Pallavi
    Kumar, Rahul
    Nath, Samir K.
    Raghava, Gajendra P. S.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2015, 89 : 93 - 106
  • [26] Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery
    Melikov, K
    Chernomordik, L
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (23) : 2739 - 2749
  • [27] Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery
    K. Melikov
    L. V. Chernomordik
    Cellular and Molecular Life Sciences CMLS, 2005, 62 : 2739 - 2749
  • [28] Cell-penetrating Peptides and Drug Delivery
    Huang, Yongzhuo
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2014, 15 (03) : 191 - 191
  • [29] Current Understanding of Direct Translocation of Arginine-Rich Cell-Penetrating Peptides and Its Internalization Mechanisms
    Takeuchi, Toshihide
    Futaki, Shiroh
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2016, 64 (10) : 1431 - 1437
  • [30] Bio-Membrane Internalization Mechanisms of Arginine-Rich Cell-Penetrating Peptides in Various Species
    Liu, Betty Revon
    Chiou, Shiow-Her
    Huang, Yue-Wern
    Lee, Han-Jung
    MEMBRANES, 2022, 12 (01)