Renormalization approach to the Kubo formula in Fibonacci systems -: art. no. 174205

被引:20
|
作者
Sánchez, V
Pérez, LA
Oviedo-Roa, R
Wang, CM
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico
[2] IPN, ESIME Culhuacan, Mexico City 04430, DF, Mexico
来源
PHYSICAL REVIEW B | 2001年 / 64卷 / 17期
关键词
D O I
10.1103/PhysRevB.64.174205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A renormalization method is developed for the Kubo-Greenwood formula, in order to analyze the electronic transport in large quasiperiodic lattices at zero temperature, within a tight-binding model. The results show a scaling invariance of the conduction spectrum around the transparent state, where a periodic oscillating pattern is found. However, the dc conductivity averaged over the transmission window of the leads presents a significant reduction, when the system size becomes macroscopic. A detailed study of the boundary-condition effects on the ac conductivity reveals the robustness of the transparent states, contrary to that observed in other high dc-conduction states.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The beta function of N=1 SYM in differential renormalization -: art. no. 049
    Mas, J
    Seijas, C
    Pérez-Victoria, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (03):
  • [32] Renormalization group analysis in nonrelativistic QCD for colored scalars -: art. no. 014015
    Hoang, AH
    Ruiz-Femenía, P
    PHYSICAL REVIEW D, 2006, 73 (01):
  • [33] Renormalization group analysis of ρ-meson properties at finite density -: art. no. 037901
    Kim, Y
    Lee, HK
    PHYSICAL REVIEW C, 2000, 62 (03): : 4
  • [34] Mass of the ηb and αs from the Nonrelativistic Renormalization Group -: art. no. 242001
    Kniehl, BA
    Penin, AA
    Pineda, A
    Smirnov, VA
    Steinhauser, M
    PHYSICAL REVIEW LETTERS, 2004, 92 (24) : 242001 - 1
  • [35] Numerical contractor renormalization method for quantum spin models -: art. no. 104424
    Capponi, S
    Läuchli, A
    Mambrini, M
    PHYSICAL REVIEW B, 2004, 70 (10) : 104424 - 1
  • [36] Perturbative and nonperturbative aspects of the proper time renormalization group -: art. no. 105020
    Zappalà, D
    PHYSICAL REVIEW D, 2002, 66 (10)
  • [37] Real-space renormalization group with effective interactions -: art. no. 085110
    Malrieu, JP
    Guihéry, N
    PHYSICAL REVIEW B, 2001, 63 (08):
  • [38] Renormalization group improved small-x equation -: art. no. 114036
    Ciafaloni, M
    Colferai, D
    Salam, GP
    PHYSICAL REVIEW D, 1999, 60 (11):
  • [39] Renormalization-group flow equations for Uk and Zk -: art. no. 065010
    Branchina, V
    PHYSICAL REVIEW D, 2000, 62 (06) : 5
  • [40] Renormalization group in quantum mechanics at zero and finite temperature -: art. no. 046129
    Gosselin, P
    Mohrbach, H
    Bérard, A
    PHYSICAL REVIEW E, 2001, 64 (04):