Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithium-Ion Battery Anodes

被引:7
|
作者
Thi Thanh Dang Nhan [1 ,2 ]
Nguyen Thanh-Dinh [3 ]
Lizundia, Erlantz [4 ,5 ,6 ]
Quoc Le Thang [2 ]
MacLachlan, Mark J. [3 ,7 ,8 ]
机构
[1] Hue Univ, Hue Univ Sci, Dept Chem, 77 Nguyen Hue, Hue 530000, Vietnam
[2] Hue Univ, Hue Univ Educ, Dept Chem, 34 Le Loi, Hue 530000, Vietnam
[3] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[4] Univ Basque Country UPV EHU, Fac Engn Bilbao, Dept Graph Design & Engn Projects, Bilbao 48013, Spain
[5] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Swiss Fed Inst Technol, Dept Mat, Lab Multifunct Mat, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
[7] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
[8] Kanazawa Univ, WPI Nano Life Sci Inst, Kanazawa, Ishikawa 9201192, Japan
来源
CHEMISTRYSELECT | 2020年 / 5卷 / 27期
基金
加拿大自然科学与工程研究理事会;
关键词
Biomimetic synthesis; Chitosan; Cobalt ferrite; Lithium-ion batteries; Mesoporous materials; CARBON NANOTUBES; VOLUME-CHANGE; HIGH-CAPACITY; THIN-FILMS; ARRAYS; NANOCRYSTALLINE; NANOCOMPOSITES; STABILITY; ELECTRODE; POLYMER;
D O I
10.1002/slct.202002152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structural biomimicry is a fascinating concept to explore hierarchically organized nanomaterials for mechanical structures, catalysis, sensing, and energy storage applications. Here we report the fabrication of biomimetic mesoporous cobalt ferrite/carbon nanoflake materials with helical morphologies and evaluate their electrochemical properties as free-standing lithium-ion battery (LIB) anodes. Iridescent chiral nematic mesoporous chitosan films obtained from crab shells were combined with binary metallic ions to afford helical cobalt ferrite/chitosan membranes. The cobalt ferrite/chitosan composites were thermally converted to cobalt ferrite/carbon replicas with hybrid nanoflakes arranged in a twisted Bouligand-type mesoporous network. The structure of the materials was probed by electron microscopy, powder X-ray diffraction, and Raman spectroscopy. We directly used these freestanding cobalt ferrite/carbon films as binder- and additive-free LIB anodes, where they showed a first discharge capacity of 862 mAh g(-1)(at 100 mA g(-1)), which faded during subsequent charge-discharge cycles. Our work demonstrates a new potential use of chiroptical chitosan membranes to develop energy storage materials, a process that may be extended to other metal-oxide based components.
引用
收藏
页码:8207 / 8217
页数:11
相关论文
共 50 条
  • [21] An oxidative pretreatment for lithium-ion battery anodes
    Tibbetts, GG
    Nazri, GA
    Howie, BJ
    PROCEEDINGS OF THE SYMPOSIUM ON LITHIUM POLYMER BATTERIES, 1997, 96 (17): : 243 - 249
  • [22] Spherical cobalt/cobalt oxide - Carbon composite anodes for enhanced lithium-ion storage
    Patrinoiu, Greta
    Etacheri, Vinodkumar
    Somacescu, Simona
    Teodorescu, Valentin S.
    Birjega, Ruxandra
    Culita, Dana C.
    Hong, Chulgi Nathan
    Calderon-Moreno, Jose Maria
    Pol, Vilas G.
    Carp, Oana
    ELECTROCHIMICA ACTA, 2018, 264 : 191 - 202
  • [23] Stacking and freestanding borophene for lithium-ion battery application
    Shao, Wei
    Hou, Chuang
    Wu, Zenghui
    Zhang, Pengyu
    Tai, Guoan
    NANOTECHNOLOGY, 2023, 34 (31)
  • [24] Synthesis of nanocubic lithium cobalt ferrite toward high-performance lithium-ion battery
    Ebtesam E. Ateia
    Mahmoud A. Ateia
    Motaz G. Fayed
    Soliman. I. El-Hout
    Saad G. Mohamed
    M. M. Arman
    Applied Physics A, 2022, 128
  • [25] Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes
    Kim, Nahyeon
    Park, Hyejeong
    Yoon, Naeun
    Lee, Jung Kyoo
    ACS NANO, 2018, 12 (04) : 3853 - 3864
  • [26] Synthesis of nanocubic lithium cobalt ferrite toward high-performance lithium-ion battery
    Ateia, Ebtesam E.
    Ateia, Mahmoud A.
    Fayed, Motaz G.
    El-Hout, Soliman, I
    Mohamed, Saad G.
    Arman, M. M.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (06):
  • [27] Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent
    Daubry, Albert Claude Jean-Pierre
    Xu, Zhuijun
    Yang, Ming
    Cheng, Ya-Jun
    Xia, Yonggao
    Hu, Xile
    INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (14) : 3484 - 3493
  • [28] Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries
    Xu, Yunhua
    Zhu, Yujie
    Wang, Chunsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) : 9751 - 9757
  • [29] Direct Synthesis of Self-Assembled Ferrite/Carbon Hybrid Nanosheets for High Performance Lithium-Ion Battery Anodes
    Jang, Byungchul
    Park, Mihyun
    Chae, Oh B.
    Park, Sangjin
    Kim, Youngjin
    Oh, Seung M.
    Piao, Yuanzhe
    Hyeon, Taeghwan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (36) : 15010 - 15015
  • [30] Fast lithium transport in PbTe for lithium-ion battery anodes
    Wood, Sean M.
    Klavetter, Kyle C.
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) : 7238 - 7243