Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithium-Ion Battery Anodes

被引:7
|
作者
Thi Thanh Dang Nhan [1 ,2 ]
Nguyen Thanh-Dinh [3 ]
Lizundia, Erlantz [4 ,5 ,6 ]
Quoc Le Thang [2 ]
MacLachlan, Mark J. [3 ,7 ,8 ]
机构
[1] Hue Univ, Hue Univ Sci, Dept Chem, 77 Nguyen Hue, Hue 530000, Vietnam
[2] Hue Univ, Hue Univ Educ, Dept Chem, 34 Le Loi, Hue 530000, Vietnam
[3] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[4] Univ Basque Country UPV EHU, Fac Engn Bilbao, Dept Graph Design & Engn Projects, Bilbao 48013, Spain
[5] Basque Ctr Mat Applicat & Nanostruct, BCMat, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Swiss Fed Inst Technol, Dept Mat, Lab Multifunct Mat, Vladimir Prelog Weg 5, CH-8093 Zurich, Switzerland
[7] Univ British Columbia, Stewart Blusson Quantum Matter Inst, 2355 East Mall, Vancouver, BC V6T 1Z4, Canada
[8] Kanazawa Univ, WPI Nano Life Sci Inst, Kanazawa, Ishikawa 9201192, Japan
来源
CHEMISTRYSELECT | 2020年 / 5卷 / 27期
基金
加拿大自然科学与工程研究理事会;
关键词
Biomimetic synthesis; Chitosan; Cobalt ferrite; Lithium-ion batteries; Mesoporous materials; CARBON NANOTUBES; VOLUME-CHANGE; HIGH-CAPACITY; THIN-FILMS; ARRAYS; NANOCRYSTALLINE; NANOCOMPOSITES; STABILITY; ELECTRODE; POLYMER;
D O I
10.1002/slct.202002152
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structural biomimicry is a fascinating concept to explore hierarchically organized nanomaterials for mechanical structures, catalysis, sensing, and energy storage applications. Here we report the fabrication of biomimetic mesoporous cobalt ferrite/carbon nanoflake materials with helical morphologies and evaluate their electrochemical properties as free-standing lithium-ion battery (LIB) anodes. Iridescent chiral nematic mesoporous chitosan films obtained from crab shells were combined with binary metallic ions to afford helical cobalt ferrite/chitosan membranes. The cobalt ferrite/chitosan composites were thermally converted to cobalt ferrite/carbon replicas with hybrid nanoflakes arranged in a twisted Bouligand-type mesoporous network. The structure of the materials was probed by electron microscopy, powder X-ray diffraction, and Raman spectroscopy. We directly used these freestanding cobalt ferrite/carbon films as binder- and additive-free LIB anodes, where they showed a first discharge capacity of 862 mAh g(-1)(at 100 mA g(-1)), which faded during subsequent charge-discharge cycles. Our work demonstrates a new potential use of chiroptical chitosan membranes to develop energy storage materials, a process that may be extended to other metal-oxide based components.
引用
收藏
页码:8207 / 8217
页数:11
相关论文
共 50 条
  • [1] Carbon Nanofibers Loaded with Carbon Nanotubes and Iron Oxide as Flexible Freestanding Lithium-Ion Battery Anodes
    Joshi, Bhavana
    Samuel, Edmund
    Jo, Hong Seok
    Kim, Yong-Il
    Park, Sera
    Swihart, Mark T.
    Yoon, Woo Young
    Yoon, Sam S.
    ELECTROCHIMICA ACTA, 2017, 253 : 479 - 488
  • [2] Interweaving of multilevel carbon networks with mesoporous TiO2 for lithium-ion battery anodes
    Lin, Zixia
    Zheng, Mingbo
    Zhao, Bin
    Pan, Lijia
    Pu, Lin
    Shi, Yi
    RSC ADVANCES, 2013, 3 (47): : 24882 - 24885
  • [3] Carbon-carbon composite as anodes for lithium-ion battery systems
    Hossain, S
    Saleh, Y
    Loutfy, R
    JOURNAL OF POWER SOURCES, 2001, 96 (01) : 5 - 13
  • [4] Upcycling of spent lithium-ion battery graphite anodes for a dual carbon lithium-ion capacitor
    Bhattacharjee, Udita
    Bhar, Madhushri
    Bhowmik, Subhajit
    Martha, Surendra K.
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (09) : 2104 - 2116
  • [5] Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes
    Guoqiang Tan
    Feng Wu
    Yifei Yuan
    Renjie Chen
    Teng Zhao
    Ying Yao
    Ji Qian
    Jianrui Liu
    Yusheng Ye
    Reza Shahbazian-Yassar
    Jun Lu
    Khalil Amine
    Nature Communications, 7
  • [6] Silicon/disordered carbon nanocomposites for lithium-ion battery anodes
    Guo, ZP
    Milin, E
    Wang, JZ
    Chen, J
    Liu, HK
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2211 - A2216
  • [7] Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes
    Wu, Hao
    Xu, Ming
    Wu, Haoyu
    Xu, Jingjie
    Wang, Yanli
    Peng, Zheng
    Zheng, Gengfeng
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (37) : 19821 - 19825
  • [8] Carbon-Coated Magnesium Ferrite Nanofibers for Lithium-Ion Battery Anodes with Enhanced Cycling Performance
    Luo, Lei
    Li, Dawei
    Zang, Jun
    Chen, Chen
    Zhu, Jiadeng
    Qiao, Hui
    Cai, Yibing
    Lu, Keyu
    Zhang, Xiangwu
    Wei, Qufu
    ENERGY TECHNOLOGY, 2017, 5 (08) : 1364 - 1372
  • [9] Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes
    An, Weili
    Fu, Jijiang
    Su, Jianjun
    Wang, Lei
    Peng, Xiang
    Wu, Kai
    Chen, Qiuyun
    Bi, Yajun
    Gao, Biao
    Zhang, Xuming
    JOURNAL OF POWER SOURCES, 2017, 345 : 227 - 236
  • [10] Decoration of MnO Nanocrystals on Flexible Freestanding Carbon Nanofibers for Lithium Ion Battery Anodes
    Samuel, Edmund
    Jo, Hong Seok
    Joshi, Bhavana
    An, Seongpil
    Park, Hyun Goo
    Kim, Yong Il
    Yoon, Woo Young
    Yoon, Sam S.
    ELECTROCHIMICA ACTA, 2017, 231 : 582 - 589