An Adaptive Serial Acquisition of PN Sequence in Nonhomogenous AWGN Channel Using Artificial Neural Networks

被引:0
|
作者
Benkrinah, Sabra [1 ]
Benslama, Malek [2 ]
Barkat, Mourad [3 ]
机构
[1] Kasdi Merbah Ouargla Univ, Genie Elect Lab, Fac Sci & Technol & Mat Sci, Ouargla 30000, Algeria
[2] Mentouri Constantine Univ, Fac Engn Sci, Elect Dept, Constantine 25000, Algeria
[3] King Saud Univ, Dept Comp Engn, Riyadh, Saudi Arabia
关键词
component; serial acquisition; PN sequences; CDMA; CFAR; artificial neural networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose an adaptive non-coherent serial pseudo-noise (PN) acquisition scheme for code division multiple access (CDMA) communication systems. Acquisition systems based on a fixed threshold may not be able to adapt to varying mobile communication environments leading to a high false alarm rate and/or a low detection probability. Accordingly, an adaptively varying threshold scheme based on artificial neural networks, namely the artificial neural networks constant false alarm rate (ANN-CFAR) algorithm for the serial system under consideration to improve the detection performance. The performance of the proposed system in terms of probability of detection, false alarm rate and mean acquisition time in a nonhomogenous Gaussian channel is studied and compared with those of the conventional adaptive acquisition scheme based on CA-CFAR and OS-CFAR detectors.
引用
收藏
页码:380 / 385
页数:6
相关论文
共 50 条
  • [21] Bacterial DNA Sequence Compression Models Using Artificial Neural Networks
    Duarte, Manuel J.
    Pinho, Armando J.
    ENTROPY, 2013, 15 (09): : 3435 - 3448
  • [22] Classifying the Acquisition Sequence for Brain MRIs Using Neural Networks on Single Slices
    Braeker, Norbert
    Schmitz, Cornelia
    Wagner, Natalie
    Stanicki, Badrudin J.
    Schroeder, Christina
    Ehret, Felix
    Fuerweger, Christoph
    Zwahlen, Daniel R.
    Foerster, Robert
    Muacevic, Alexander
    Windisch, Paul
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (02)
  • [23] Dynamic Channel Selection in IEEE 802.15.4 Using Artificial Neural Networks
    Agredo Mendez, Guefry Leider
    Tobar Arteaga, Carlos Hernan
    ENTRE CIENCIA E INGENIERIA, 2011, (10): : 108 - 120
  • [24] Optimized Channel Allocation Using Genetic Algorithm and Artificial Neural Networks
    Rajagopalan, Narendran
    Mala, C.
    Sridevi, M.
    Prasath, R. Hari
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 645 - 655
  • [25] A new adaptive serial search PN code acquisition scheme for DS-CDMA systems
    Warsi, RA
    Chaturvedi, AK
    2000 IEEE INTERNATIONAL CONFERENCE ON PERSONAL WIRELESS COMMUNICATIONS, 2000, : 245 - 248
  • [26] ARC. Adaptive robot control using artificial neural networks
    Adaptive Roboterkontrolle mit kuenstlichen Neuronalen Netzen
    Moeller, Knut, 1600, (33):
  • [27] Activity Recognition in Adaptive Assistive Systems Using Artificial Neural Networks
    Oniga, Stefan
    Suto, Jozsef
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2016, 22 (01) : 68 - 72
  • [28] Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks
    Nkwogu, Daniel N.
    Allen, Alastair R.
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2012, 1 (03): : 299 - 320
  • [29] Adaptive balancing of highly flexible rotors by using artificial neural networks
    Saldarriaga, M. Villafane
    Mahfoud, J.
    Steffen, V., Jr.
    Hagopian, J. Der
    SMART STRUCTURES AND SYSTEMS, 2009, 5 (05) : 507 - 515
  • [30] Artificial neural networks for molecular sequence analysis
    Wu, CH
    COMPUTERS & CHEMISTRY, 1997, 21 (04): : 237 - 256