Short Time Series Microarray Data Analysis and Biological Annotation

被引:0
|
作者
Soekmen, Zerrin [1 ]
Atalay, Volkan [1 ]
Atalay, Renguel Cetin [2 ]
机构
[1] Orta Dogu Tekn Univ, Bilgisayar Muhendisligi Bolumu, Ankara, Turkey
[2] Bilkent Univ, Molekuler Biyoloji & Genet Bolumu, Bilkent, Turkey
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Significant gene list is the result of microarray data analysis should be explained for the purpose of biological functions. The aim of this study is to extract the biologically related gene clusters over the short time series microarray gene data by applying unsupervised methods and automatically perform biological annotation of those clusters. In the first step of the study, short time series microarray expression data is clustered according to similar expression profiles. After that, several biological data sources are integrated to get information related with the genes in one of those clusters and new sub-clusters are created by using this unified information. As a last step, biological annotation of gene sub-clusters is performed by using information related with those sub-clusters.
引用
收藏
页码:533 / +
页数:2
相关论文
共 50 条
  • [41] Facilitating functional annotation of chicken microarray data
    Buza, Teresia J.
    Kumar, Ranjit
    Gresham, Cathy R.
    Burgess, Shane C.
    McCarthy, Fiona M.
    BMC BIOINFORMATICS, 2009, 10 : S2
  • [42] Bayesian network classifiers for time-series microarray data
    Tucker, A
    Vinciotti, V
    't Hoen, PAC
    Liu, XH
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 475 - 485
  • [43] Reducing Label Fragmentation During Time-series Data Annotation to Reduce Annotation Costs
    Korpela, Joseph
    Akiyama, Takayuki
    Niikura, Takehiro
    Nakamura, Katsuyuki
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 328 - 333
  • [44] Facilitating functional annotation of chicken microarray data
    Teresia J Buza
    Ranjit Kumar
    Cathy R Gresham
    Shane C Burgess
    Fiona M McCarthy
    BMC Bioinformatics, 10
  • [45] Identifying periodically expressed transcripts in microarray time series data
    Wichert, S
    Fokianos, K
    Strimmer, K
    BIOINFORMATICS, 2004, 20 (01) : 5 - 20
  • [46] Predicting microRNA targets in time-series microarray experiments via functional data analysis
    Brian J Parker
    Jiayu Wen
    BMC Bioinformatics, 10
  • [47] Dominant spectral component analysis for transcriptional regulations using microarray time-series data
    Yeung, LK
    Szeto, LK
    Liew, AWC
    Yan, H
    BIOINFORMATICS, 2004, 20 (05) : 742 - U575
  • [48] Predicting microRNA targets in time-series microarray experiments via functional data analysis
    Parker, Brian J.
    Wen, Jiayu
    BMC BIOINFORMATICS, 2009, 10
  • [49] Temporal classification of short time series data
    Venn, Benedikt
    Leifeld, Thomas
    Zhang, Ping
    Muehlhaus, Timo
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [50] Temporal classification of short time series data
    Benedikt Venn
    Thomas Leifeld
    Ping Zhang
    Timo Mühlhaus
    BMC Bioinformatics, 25