Toward a theory of integrable hyperbolic equations of third order

被引:11
|
作者
Adler, V. E. [1 ]
Shabat, A. B. [1 ]
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
关键词
CAMASSA-HOLM EQUATION; BACKLUND-TRANSFORMATIONS; SYMMETRIES;
D O I
10.1088/1751-8113/45/39/395207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Examples are considered of integrable third order hyperbolic equations with two independent variables. In particular, an equation is found which admits as evolutionary symmetries the Krichever-Novikov equation and the modified Landau-Lifshitz system. The problem of the choice of dynamical variables for the hyperbolic equations is discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Recursion operators for a class of integrable third-order evolution equations
    Petersson, N
    Euler, N
    Euler, M
    STUDIES IN APPLIED MATHEMATICS, 2004, 112 (02) : 201 - 225
  • [22] Controllability of parabolic and hyperbolic equations: Toward a unified theory
    Li, W
    Zhang, X
    CONTROL THEORY OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 242 : 157 - 174
  • [23] Integrable evolution Hamiltonian equations of the third order with the Hamiltonian operator Dx
    Meshkov, A. G.
    Sokolov, V. V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 85 : 245 - 251
  • [24] The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations
    Andreev, A. A.
    Yakovleva, J. O.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2019, 23 (01): : 186 - 194
  • [25] ON THE DARBOUX INTEGRABLE HYPERBOLIC-EQUATIONS
    SOKOLOV, VV
    ZHIBER, AV
    PHYSICS LETTERS A, 1995, 208 (4-6) : 303 - 308
  • [26] Third-order methods for first-order hyperbolic partial differential equations
    Cheema, TA
    Taj, MSA
    Twizell, EH
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (01): : 31 - 41
  • [27] CAUCHY PROBLEM FOR HYPERBOLIC EQUATIONS OF THIRD ORDER WITH VARIABLE EXPONENT OF NONLINEARITY
    Buhrii, O. M.
    Kholyavka, O. T.
    Pukach, P. Ya.
    Vovk, M. I.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 419 - 433
  • [28] ON THE DARBOUX INTEGRABLE NONLINEAR HYPERBOLIC-EQUATIONS
    ZHIBER, AV
    SOKOLOV, VV
    STARTSEV, SY
    DOKLADY AKADEMII NAUK, 1995, 343 (06) : 746 - 748
  • [29] Exactly integrable hyperbolic equations of Liouville type
    Zhiber, AV
    Sokolov, VV
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (01) : 61 - 101
  • [30] A family of integrable nonlinear equations of hyperbolic type
    Tongas, A
    Tsoubelis, D
    Xenitidis, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) : 5762 - 5784